
  

  

Abstract—Research has demonstrated the efficacy of closed-
loop control of anesthesia using bispectral index (BIS) as the 
controlled variable, and the recent development of model-
based, patient-adaptive systems has considerably improved 
anesthetic control.  To further explore the use of model-based 
control in anesthesia, we investigated the application of fuzzy 
control in the delivery of patient-specific propofol-induced 
hypnosis. In simulated intraoperative patients, the fuzzy 
controller demonstrated clinically acceptable performance, 
suggesting that further study is warranted. 

I. INTRODUCTION 
HE bispectral index (BIS) quantifies the relationship 
among the electroencephalogram’s (EEG) underlying 

sinusoidal components [1] to provide a  validated measure of 
the hypnotic component of anesthesia1 [2]. As such, BIS has 
been used to guide anesthesia in closed-loop control 
applications [3][4], yielding overall better control, decreased 
anesthetic consumption, enhanced hemodynamic stability, 
and faster recovery when compared to manual anesthetic 
management [4][5]. 

Historically, the application of proportional-integral-
derivative (PID) control [3] in closed-loop anesthesia has 
demonstrated moderate success. However, successes have 
been constrained by the limitations of the controlling 
technique [6], as well as the level of complexity and 
variability encountered in  human physiology [7][8].  

A recently developed model-based, patient-adaptive 
system [9] in which the drug dose-response relationship is 
continuously updated has demonstrated superior 
performance when compared to a PID-based technique in a 
simulation study. However, it has been observed that the 
efficacy of PID control may be improved by targeting the 
effect site concentration of propofol, rather than plasma 
concentration [3]. 

The objective of this simulation study was to investigate 
the application of fuzzy control in closed-loop delivery of 
propofol-induced hypnosis.  The application is challenging: 
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1 Hypnosis is the suppression of cortical activity and is a fundamental 

component of anesthesia, which also includes analgesia and amnesia. 

the BIS signal is inherently noisy, and a patient’s 
pharmacodynamic response to propofol infusion is known to 
be non-linear, time-delayed, and subject to inter-patient 
variability.  Motivated in part by the successes reported by 
Schaublin in mechanical ventilation [10], a similarly 
challenging application, a fuzzy control method was chosen.  

II. METHODS 
For this investigation, the controller was developed using 

basic fuzzy set operations, and optimization was 
accomplished with simulated annealing.  The controller was 
then applied to a randomly generated population of 1000 
simulated intraoperative patients, and control performance 
was assessed. 

A. Fuzzy Controller Architecture 
To develop our fuzzy controller, we first identified three 

input variables for patient state classification, one of which 
required the inclusion of a model of propofol effect.  A 
structured mechanism for linking propofol infusion rate to 
patient state was then devised. 

 
1) Controller Inputs 

To achieve and maintain a desired level of hypnosis 
(BIStarget), the controller observed the patient’s bispectral 
index (BISmeasured) on 5s intervals.  Since BIS is an inherently 
noisy signal, BISmeasured was smoothed using a recursive 
“alpha-beta” filter (α=0.85). From these parameters, two 
control input variables were computed: E and ΔE.  E was 
defined as the difference in BISmeasured and BIStarget. ΔE was 
defined as the change in E over 15s, or Et - Et-2. The third 
input variable, the predicted BIS error, pE relied on general 
models for propofol response to predict the control error 60s 
in the future. 
 

2) Propofol Pharmacokinetics and Pharmacodynamics 
Propofol pharmacokinetics were modeled using 

Schnider’s three-compartment model [10], which provides 
the central, rapid, and slow compartments to estimate the 
time-dependent distribution of propofol.  Propofol is 
introduced into the central compartment, the patient’s blood 
volume, via intravenous infusion.  First-order differential 
equations model the gradient-driven flow of propofol 
between compartments, and a diffusion constant to model 
propofol metabolism is also provided.  In the Schnider 
model, these diffusion constants are dependent upon patient 
height, weight, gender, and age. 

An infusion of intravenous propofol exhibits a 2.7 minute 
time-to-peak effect as measured by BIS [12].  To model this 
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delay, the Schnider kinetic model was augmented with a 
fourth compartment, the effect site [5]  

To model the hypnotic effect of propofol (as measured by 
BIS), a nonlinear pharmacodynamic model was developed 
using the observations of Doufas [12]. BIS is a statistically 
derived measure that lies in the range [0,100] and varies 
proportionally with consciousness [1]. Using this model, the 
controller could generally predict propofol effect based on 
the estimated effect site concentration. 
 

3) Fuzzy Classification of Patient State 
In 1965, Zadeh introduced fuzzy logic, a system for logical 

operations on fuzzy sets [13]. In this system, fuzzy set 
membership is represented as a real number in the range [0, 
1], unlike conventional binary-valued set theory.  This 
representation admits a variety of membership functions; of 
these, we chose Gaussian kernels.  To classify an input 
variable, the kernels were uniformly distributed along each 
variable’s bounded interval, and each kernel was scaled by a 
standard deviation of 3.   

The input variables E and pE were classified using nine 
kernels spanning the bounded interval [-20,20] BIS.  Kernels 
were centered at the following points: -20, -15, -10, -5, 0, 5, 
10, 15, and 20.  These kernel placements corresponded to the 
negative and positive linguistic classifications of Extreme, 
High, Low, Slight, as well as Zero.  Under this scheme, 
Extreme Negative was designated XN, Zero was designated 
Z, and Extreme Positive was designated XP.  ΔE was 
classified using three kernels spanning the bounded interval 
[-5,5] BIS.  Kernels were placed at -5, 0, and 5; these kernels 
corresponded to linguistic classifications of Negative, Zero, 
and Positive. Kernel placement and linguistic classifications 
were chosen under the supervision of A.G. Doufas, an 
Associate Professor of Anesthesia and practicing 
anesthesiologist. 
 

4) Defuzzification: Determining Propofol Infusion Rate 
Given a patient state classification, the next objective was 

to emulate an experienced anesthetist and match patient state 
to the required propofol infusion rate for achieving and 
maintaining the desired hypnotic level.  When observing a 
patient state of E=19, ΔE=-1, and pE=20 (which would be 
classified as [XP,Z,XP]), this clinician may reasonably 
conclude that a bolus of propofol is indicated.  Likewise, this 
clinician may recognize that a classification of [SN,Z,Z] 
represents an equilibrium state and no infusion is needed.  
However, this state classification method permits 243 
combinations of state variables (9 x 3 x 9), and optimal 
dosing in many combinations may not be obvious. 

To formalize the process of linking patient state to 
infusion rate, we defuzzified patient state by computing the 
fuzzy set intersection [13]: 
 

( ) ( ) ( ) ( )( )pEMEMEMpEEEI kji ,,min,, Δ=Δ ,     (1) 
where i, j, and k iterated over the respective sets of 
membership kernels. The propofol infusion rate (ml·min-1) 
was then computed as the weighted centroid of I [14]: 

( ) ( ) kjikji kji PpEEEIpEEEF ,,,, ,,,,,, ∑ ⋅Δ=Δ       (2) 

As shown in (2), a weighted sum of the fuzzy set 
intersections was computed using P, a three-dimensional 
weighting function that presented a direct method of 
optimizing infusion rate selection. 

B. Policy Optimization 
To determine a near-optimal dosing policy for the set of 

all patient states, the task was structured as a three-
dimensional minimization problem and optimized using 
Simulated Annealing. 

 
1) Simulated Annealing 

Simulated Annealing is a global optimization method 
modeled after the annealing process in metallurgy and is 
used to find non-local solutions in large state spaces.  The 
method resembles a random walk in its exploration but 
employs acceptance criteria in a manner that resembles a 
hill-climbing technique [15].  

In this application, optimization began with a randomly 
selected configuration in which the members of P were 
selected from [-1.0,1.0] with uniform probability.  This 
policy, P0, was evaluated for fitness, and exploration of 
configuration space was initiated with an arbitrary transition 
to a neighboring state. 

A successor configuration St+1 was visited by randomly 
choosing a three-dimensional step vector ΔP and updating Pt 
accordingly: St+1 = Pt + ΔP. This successor state was then 
evaluated for fitness and accepted (Pt+1 = St+1) if the 
successor configuration demonstrated improvement.   If the 
successor configuration was not accepted, the configuration 
remained unchanged, i.e. Pt+1 = Pt.   

Although better configurations were always accepted, 
occasionally the system was permitted to achieve sub-
optimal neighboring states to avoid becoming stuck in a 
locally optimal solution.  Following the example of 
Metropolis [16], we applied a Boltzmann distribution to 
determine the system temperature, the likelihood of 
accepting non-improving configurations.  As optimization 
progressed, the system was “cooled” proportionally with the 
number of iterations and non-improving state transitions 
became less likely. 

In this application, the temperature also influenced the rate 
of exploration.  Initially, the step parameter ΔP was 
constrained to the interval [-0.1,0.1] to encourage global 
exploration.  Over the course of optimization, the step 
interval was scaled proportionally with temperature to focus 
optimization.  Although good solutions were usually found 
quickly, optimization was permitted to run for 108 iterations, 
or approximately twenty hours of computation on a 
contemporary desktop computer. 
 

2) Fitness Criterion 
Since “optimality” implies a measure of comparison, we 

implemented a benchmark control task to grade policy 
configurations. In this task, the controller guided propofol-
induced hypnosis in a simulated intraoperative patient (male, 
70 kg, 180 cm, 21 yr) for 60 minutes.  The patient was 
assumed fully conscious at the beginning of the task 
(BISmeasured ≈ 95), so the controller was challenged with both 
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induction and maintenance of anesthesia. Propofol infusion 
rate selections were made on 5s intervals for consistency 
with commercially-available bispectral index monitors.  The 
infusion rate was bounded to the interval [0,4.0] ml·min-1 
and discretized to 0.01 ml·min-1 to accommodate 
commercially-available infusion pumps. Control error 
(BISmeasured – BIStarget) was assessed on 5s intervals.  The 
fitness criterion, root-mean-squared error (RMSE), was 
computed over the resulting 720 samples. 

In practice, a fuzzy logic controller developed in this 
manner showed signs of target dependence, i.e. a policy 
developed at BIStarget=40 may not yield good performance at 
BIStarget=60.  Since both of these targets are clinically useful, 
two distinct controllers were optimized for these targets; 
policies for these controllers were labeled P40 and P60, 
respectively. 

C. Policy Evaluation and Selection 
To evaluate the resulting fuzzy logic controllers, we 

simulated 1000 episodes of propofol hypnosis, each lasting 
240 minutes.  BIS targets of 40 and 60 were presented in 
random order, and the selected target remained in effect for 
120 minutes.  The active controller (P40 or P60) was tasked 
with achieving and maintaining the desired target.  As in the 
fitness test, control decisions were made on 5s intervals. 

For a heterogeneous patient population, each patient’s 
demographic parameters were randomly selected with 
uniform probability from the associated ranges: age [18,45] 
years, weight [45,90] kg, and height [150,190] cm.  Gender 
was chosen similarly. 

A clinical system for closed-loop hypnosis must be 
prepared to manage other sources of inter-patient variation, 
as well.  Accordingly, we developed a Patient Variability 
Model (PVM) to challenge the controller with variation in 
propofol sensitivity and BIS measurement noise.  Fig. 1 
illustrates the interaction between the controller and 
simulated intraoperative patient.  As shown, the PVM 
models patient variation with perturbations of propofol 
pharmacodynamics (drug effect) without the controller’s 
direct observation (Fig. 1). Equation (3) formalizes the 
relationship illustrated in Fig. 1. 

 
)()()( tBIStBIStBIS PVMidealmeasured Δ+=        (3) 

 
Changes in propofol sensitivity, ΔBISPVM, were modeled as a 
sum of time-dependent and time-independent parameters:   
 

εκ +Δ+=Δ )()( tBIStBIS individualPVM .        (4) 
 

A static term, κindividual, chosen randomly from [-10,10] 
BIS, represented constant deviation in the form of individual 
sensitivity and persistent surgical stimulus [7].  BIS 
measurement noise, ε, was modeled as a stationary, 
normally-distributed signal with mean zero and standard 
deviation three [9].  

A non-stationary perturbation ΔBIS(t) was also modeled.  
In its positive form (chosen with p=0.8), this component 
represented the arousing effect of a noxious surgical 
stimulus [8]. In the negative form (chosen with p=0.2), this 
component represented the depression of BIS associated 
with synergistic drug interaction.   

Since the bispectral index is a time-averaged parameter, 
non-stationary perturbations cannot be observed as abrupt 
signal changes.  Accordingly, we modeled ΔBIS(t) by 
passing a square function through a recursive “alpha-beta” 
filter, which yielded a smooth, lagging curve.  To challenge 
the controller with a range of clinically relative disturbances, 
the peak magnitude of the square function was randomly 
chosen [1,20] BIS, and duration was chosen from [2,10] 
min. The interval between successive impulses was chosen 
from [4,20] min. 

D. Performance Analysis 
Analysis of steady-state control performance followed the 

methods of Varvel [17] by computing the Performance Error 
(PE) for all timesteps in each hypnotic episode: 
 

100
)(

)()(
)( ×

−
=

tBIS
tBIStBIS

tPE
target

targetmeasured        (5) 

 
From this parameter, the median PE (MDPE), median 
absolute PE (MDAPE), wobble, and divergence values were 
computed over the population of 1000 patients.  MDPE 
measured control bias, MDAPE served as a measure of 
control accuracy, wobble measured the intra-subject 
variability, and divergence indicated the stability of control.   

Additionally, we computed the Controlled metric, which 
was defined as the percentage of timesteps BISmeasured was 
within ±5 of BIStarget.  

III. RESULTS 
Table 1 summarizes the observed results. 

 
TABLE I 

OBSERVED PERFORMANCE PARAMETERS 
Parameter Observation 

mean (95% CI) 

MDPE (%) -0.32    (-0.36, -0.28) 
MDAPE (%) 2.52     (2.49, 2.54) 
Wobble (%) 2.50     (2.48, 2.53) 
Divergence (%·hr -1) 0.002   (0.002, 0.002) 
  
Controlled (%) 89.9     (89.6, 90.1) 

MDPE is median performance error, and MDAPE is  
median absolute performance error. 

  

 

 
Fig. 1.  Interaction between the fuzzy logic controller and the 
simulated intraoperative patient.   
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IV. DISCUSSION 
The results in Table1 indicate that the fuzzy controller 

provided accurate and stable control for the selected BIS 
targets.  The control bias was less than 1%, and the control 
accuracy was approximately 2.5 %.  The small wobble and 
divergence values, 2.5% and 0.002 %·hr -1, respectively 
indicate that stable control was achieved – despite the 
destabilizing influence of the Patient Variation Model.  This 
degree of control is also reflected in the high Controlled 
measure. 

These results compare favorably with the closed-loop 
hypnosis simulation study reported by Struys [9] in which a 
model-based controller was compared to conventional PID 
control.  Likewise, the results compare well with the work of 
De Smet [18].  In that study, the authors conclude that an 
MDPE of -7.8%, an MDAPE of 11.5%, a wobble value of 
8.4%, and near-zero divergence was indicative of good 
control.  Although we can make no direct comparison 
between our control performance and the performances 
reported by Struys and De Smet, we may borrow their 
criteria for good control and conclude that the fuzzy 
controller provided accurate and stable control. 

The principle limitation of this study was the fidelity of 
the Patient Variability Model (PVM).  We developed the 
PVM using published data [7][8] and our own clinical 
observations. We believe the PVM models intraoperative 
patient variation more accurately than other reported systems 
and challenges control in a clinically relevant manner.  
However, we lack evidence correlating the PVM with actual 
clinical observations. 

V. CONCLUSIONS 
This simulation study suggests that fuzzy control, when 

developed and applied as described, may be suitable for 
closed-loop delivery of propofol hypnosis in the clinical 
setting.  Our PVM challenged the controller with credible 
instances of patient variation, yet the controller 
demonstrated accurate and stable hypnosis.  Based upon 
these results, we consider a well-controlled healthy human 
volunteer investigation as a reasonable next step in the study 
of closed-loop fuzzy control of anesthesia. 
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