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Abstract— Heart sound is a valuable biosignal for early
detection of a large set of cardiac diseases. Ambient and
physiological noise interference is one of the most usual and
high probable incidents during heart sound acquisition. It
may change the prominent and crucial characteristics of heart
sound which may possess important information for heart
disease diagnosis. In this paper, we propose a new method
to detect ambient and internal body noises in heart sounds.
The algorithm utilizes physiologically inspired periodicity/semi-
periodicity criteria. A small segment of clean heart sound
exhibiting periodicity in the time and in the frequency domain is
first detected. The sound segment is used as a template to detect
uncontaminated heart sounds during recording. The technique
has been tested on the heart sounds contaminated with several
types of noises, recorded from 68 different subjects. Average
sensitivity of 95.13% and specificity of 98.65% for non-cardiac
sound detection were achieved.

I. INTRODUCTION

Cardiovascular diseases are the leading cause of death in

developed countries. In Europe it is estimated that chronic

cardiovascular diseases are responsible for 20% to 45% of

all deaths. Being a disease tightly connected to aging, it

is observed that its incidence is on the rising due to the

extended life expectancy. The solution to this health problem

is believed to be changing the focus from curative healthcare

to preventive healthcare. This is commonly believed to

be achievable by fostering preventive lifestyles as well as

early diagnosis. In this sense long term tele-monitoring is a

promising tool to achieve early diagnosis which may avoid

potentially life-critical situations as well as aggressive and

expensive treatments. Therefore, current research trends in

this direction are to integrate system solutions into ordinary

daily objects, such as functional clothes with integrated

textile or hard sensors. In order to be cost effective and

usable for long time period, these tools require intelligent

data analysis algorithms to be able to autonomously perform

diagnostic functions and to support users in solving prob-

lems. Hence, low computational algorithms that can be run

in real-time using low power processing devices is required.

In order to design effective diagnosis algorithm using vital

signals, it is observed that the noise cancelation during signal

acquisition is a primary and indispensable task. This task is

imperative for reliable diagnostic feature extraction.
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Heart sound is a valuable biosignal for early detection of

a large set of cardiac diseases. Unfortunately, heart sound

is more prone to noise than other bio-signals, therefore,

many researchers have used ECG as a reference or marker

to find the non-cardiac sounds. In [1] an ECG was used to

find heart beats in the heart sound. In this approach, power

spectrum of each beat of heart sound is correlated with the

known clean beat of heart sound to determine contaminated

beats. A very well known method for speech enhancement

based upon spectral domain Minimum-Mean Squared Error

(MMSE) estimation was applied to reduce noise affect in

heart sound [2]. This method reduces white noise from heart

sound while S3 and S4 sounds are prevented using ECG

gating. Another method for noise cancelation in real-time

was developed using an extra acoustic sensor to capture the

environmental noise. This additional signal provides a noise

signal to subtract environmental noise from the contaminated

heart sound signal [3]. A simple method of filtering with

a certain band of frequencies was used in [4]. In order to

develop cost effective, portable and practical systems, the

noise removal algorithm should exclude dependence on ECG

or any non-cardiac sound sensors.

Periodicity of heart sound components (namely S1 and S2)

is an inspiration to detect non-cardiac sounds in the heart

sound. It is observed that periodicity in heart sound tends

to be violated in the presence of internal body noises or

external noise sources. Therefore, its periodic nature could

be a significant criterion to assess noise free heart sound.

The proposed method first searches for a clean heart sound

segment as a reference signal based on periodicity in the

time and the frequency domain (spectrogram). Afterwards,

the spectral energy of the reference signal is correlated with

the rest of the heart sound in real time. Heart sound segments

which exhibit low correlation coefficients with the reference

heart sound signal are assessed as non-cardiac sounds. This

method is able to detect numerous kinds of physiological and

environmental non-cardiac sounds.

The paper is organized as follows: in the second section,

the proposed method is thoroughly explained, the third

section introduces results and discussion, and finally some

conclusions are presented in the fourth section.

II. METHOD

In order to extract reliable diagnostic features from heart

sound it is important to first suppress noise. During heart

sound acquisition many external body noises, such as ambi-

ent noises, and internal body noises, such as heavy breathing,

sounds derived by swallowing, speech etc., may be cap-

tured. These noises are linearly/nonlinearly mixed with heart
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sounds. Therefore, the suppression of these noises in heart

sounds is not a straightforward problem. Furthermore, even a

small ambiguity in suppression may lead to wrong diagnosis

based on heart sound features. The strategy proposed in this

paper is to detect the contaminated sound segments and to

exclude them from further processing. It includes two main

phases: the goal of the first phase is to find a clean segment of

heart sound that will be further used as a reference sound and

the second one is to correlate the remaining heart sounds with

the reference in order to identify the clean cardiac sounds.

The involved steps in these two components of the method

can be seen in Figure 1, and are explained in the following

sections.
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Fig. 1. Flow chart of noise detection in heart sound recording.

A. Template reference sound detection

The foremost task is to find a small segment of clean

heart sounds which will be further treated as a reference

sound. In this process, the period of the heart cycle is

estimated in the chosen window in the time domain. Later,

this estimated period is used to check about the same

number of heart cycles in the frequency domain in the same

analysis window. At last, one heart cycle among the most

alike heart cycles is chosen to be the reference sound. The

detailed method for heart cycle identification is described

below:

(A) Periodicity in the time domain: The envelopes of

the heart sound x(t) components are extracted by applying

the Hilbert transform followed by the Gammatone band-pass

filter [5]. Next, the autocorrelation function of the envelope

is computed. Typically, it will exhibit pronounced peaks

for the main heart sound components, i.e. the S1, S2

and murmur components. The autocorrelated values are

normalized by autocorrelation values of a chosen windowing

function, e.g. the Hanning window. Let xe(t) be the envelope

of the heart sound, w(t) be a windowing function, N be

number of the samples in a given segment of heart sound

and τ be time lag, then autocorrelated function, can be

formulated as in (1).

y(t) =

∫ N
0 xe(t)w(t)∗ xe(t − τ)w(t − τ)dτ

∫ N
0 w(t)∗w(t − τ)dτ

, (1)

Two factors are important to examine periodicity from

normalized autocorrelation y(t): the first one is the stronger

peaks and the second one is the curvature shape between

the stronger peaks. Each prominent peak corresponds

to one heart cycle. In the next subsections, prominent

peaks detection using heart cycle (heart rate estimation)

and curvature shape using radial distance between two

contiguous heart cycles are explained.

(A1) Prominent peaks detection: In this task, the heart

rate in a given analysis window is estimated using y(t) and

a physiological criterion. The prominent peaks in y(t) are

found using the estimated duration (or heart rate) of heart

cycles in a given segment of the analysis signal. Heart rate

in a given segment of heart sound is estimated using the

large difference between two first singular values of the

autocorrelation matrix (achieved via singular value decom-

position) which is constructed by delaying and rearranging

the autocorrelation function y(t) of the envelopes [7]. The

value of delay is set between 500 ms and 1200 ms, as heart

rate at rest are usually found between 50 beats/min and 120

beats/min.

Prominent peaks detection is followed according to the

algorithm described in [6]. Unlike this one, in the proposed

approach the estimated heart rate facilitates to discard weak

peaks around the strong peaks in y(t). Strong peaks are

directly related to the main components in the heart sound

which occur only once per heart cycle (see in Figure 2).

(A2) Periodicity check criterion: All detected stronger

peaks of y(t) in the previous step enable to find the shape

similarity between two consecutive heart cycles (contiguous

pair of stronger peaks). The similarity is measured by the

radial distance between two vectors. Let y1(t) and y2(t) be

the two vectors, the radial distance is given by,

Cos(θ) =
< y1(t),y2(t) >

| y1(t) | | y2(t) |
, (2)

where < . > is the inner product operator and | . | represents
mean square root value of the vectors. In all situations of
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Fig. 2. (a) Heart sound energy (x2(t)); (b) Heart sound envelope; (c)
Autocorrelation function of the envelope with peaks identification.

similar periodic shapes, it is observed that the Cos(θ) value

lies in the vicinity of 1.0, as shown in Figure 2(c).

(B) Periodicity in the frequency domain: The periodicity

of heart sounds in the time domain may not be affected

by many non-cardiac sounds. For instance, swallowing,

breathing or high pitched voice can not be identified using

the time domain periodicity detection technique. However,

influence of the noise source in the heart sound periodicity

can be seen in the frequency domain. The spectrogram is

utilized to find the periodic patterns in different frequency

bands. Let S( f , t) be the short Fourier transform of x(t), i.e.,

S( f , t) =

∫ M

0
x(τ)w(t − τ)exp(

−2 j f πτ

M
)dτ, (3)

where M is the window size. It has been observed

in normal/abnormal heart sounds that most power is

concentrated up to frequency of 600Hz that corresponds

to the 15 frequency bands from the spectrogram matrix.

Hence, spectral energies of these frequency bands are taken

for periodicity verification, as depicted in Figure 3 and

4. It should be noticed that normal heart sounds exhibit

regular patterns in these frequency bands which are linearly

dependent. These linear dependencies may monotonically

decrease/increase in heart sounds from prosthetic valve click

and native valve clicks. In these situations, the peaks in

power are almost aligned. These phenomenons are seen in

the heart sounds which exhibit periodicity in the frequency

domain. The methods for the verification of S1 and S2

periodicity in the frequency domain using 15 frequency

bands and the criterion for power peaks alignment in these

bands are explained next.

(B1) Pattern detection in the frequency bands: In order to

extract periodic patterns from the spectrogram matrix, the

rows are autocorrelated as given in (1). Let Sk( f , t) be the

autocorrelated function of the kth frequency band in the

spectrogram (see Figure 3 and 4). It is observed that the

autocorrelated power in the frequency bands are in regular

patterns, where the stronger peaks occur almost at the same

time. Furthermore, it is also seen that the widths of these

peaks decrease in higher frequency bands. On the other

hand, the peak widths increase in absence of signal power

in the high frequency bands; usually, strong peak widths

are absent in native heart valve clicks. Therefore, these

observations inspire in building the heuristic which may be

applied to verify if the cardiac signal is clean. One of the

observations is linear independence of the rows of Sk( f , t).
Singular value decomposition technique is applied for

linear independency measurement. Since the peak widths in

Sk( f , t) increase or decrease in ascending frequency bands,

each five contiguous ascending frequency bands are grouped

according to (4) and the singular values are computed using

the singular value decomposition (SVD) technique.

Sg(k,k+4)( f , t) =













Sk( f , t)
Sk+1( f , t)

.

.
Sk+4( f , t)













,k = 1,6,11. (4)

In (4) Sg(k,k+4) is the matrix formed by grouping of Sk( f , t)
rows for each five ascending frequency bands. The SVD

of matrix Sg(k,k+4)( f , t) provides the singular values which

reveal linear independence. The parameter ρ = (σ2/σ1)
2,

where σ1 and σ2 are the two largest eigen values of the

constructed matrix in (4), exhibits low value for linear

dependent rows. Let ρ1, ρ2 and ρ3 be the singular values

ratios of the matrix Sg(1,5)( f , t), Sg(5,10)( f , t) and Sg(10,15)

respectively, then the most significant observations regarding

pure heart sounds are: ρi > ρi+1 or ρi < ρi+1, i = 1,2. In the

situations of non cardiac sounds these sequences are violated.

It should be noted that the prominent peaks are due

to heart valve clicks. For S1 and S2 sounds of native

valves, it is observed that the width and hight of the peaks

decrease in the high frequency bands while in prosthetic

valve heart sound peak widths decrease but peaks heights

increases due to high power availability in high frequency

bands. Therefore, in prosthetic valve heart sounds linear

independency monotonically decreases in the high frequency

bands.

(B2) Peak alignment in the frequency bands: As it

has already been explained, the peaks are due to S1 and

S2 heart sounds. Therefore, they should exhibit alignment

in Sg(k,k+4)( f , t) frequency bands, whereas in presence of

noise the peak alignment is violated. In order to check the

alignment, all main peaks are found using the previously

mentioned peak detection technique. Afterwards, defining

a time tolerance (±5% of the time of first peak), all peaks

alignment are inspected.

Finally, a segment of a clean heart sound is selected

from the periodic heart sound segment. Length of selected

reference sound corresponds to the distance between two

consecutive prominent peaks in the y(t).
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Fig. 3. (a) Normal heart sound from a native valve; (b) Spectrogram; (c)
Autocorrelation function Sk( f , t) of spectral power in 15 frequency bands.
In this situation ρ increases in high frequency bands.

B. Non-cardiac sound detection using reference signal

The previous subsections introduced the preparation phase

which is required to detect the reference heart sound. This

reference sound is used as a template for further noise

detection. In this step, the spectral root mean square of the

heart sound signal is calculated from the following equation,

Srms( f , t) =

√

∫ Tw

0
| S( f , t) |2dt, (5)

where Tw is the size of the reference signal. Root mean

square of the spectrogram provides an estimate of the power

distribution in the frequency domain. Let S
re f
rms( f , t) and

Stest
rms( f , t) be the spectral root mean square for the reference

and the test heart sound signals respectively. The validation

is performed using the following condition,

CorrCoe f (Sre f
rms( f , t),Stest

rms( f , t)) > th, (6)

where CorrCoe f is the correlation coefficient between two

signals. The threshold th value is set to 0.99 in (6).
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Fig. 4. (a) Heart murmur (grade 4/6) from a subject with mitral regur-
gitation; (b) Spectrogram; (c) Autocorrelation function Sk( f , t) of spectral
power in 15 frequency bands. In this situation ρ increases in high frequency
bands.

III. RESULT AND DISCUSSION

Heart sounds were recorded from different patients with

prosthetic valve implants (both Mechanical and Biopros-

thetic) one month after surgery and some healthy volunteers.

A commercial stethoscope from Meditron is used for heart

sound acquisition which has an excellent signal to noise ratio

and extended frequency range (20 - 20,000 Hz). All sound

samples were digitized with 16-bit resolution and 44.1 kHz

sampling rate.

The prepared data set includes 95 heart sound samples of

recording length of about one minute each which have been

collected from 68 different subjects. In order to validate the

performance of the algorithm, diverse noises were induced

on purpose during the heart sound acquisition. Hence, each

heart sound sample includes various non-cardiac sounds,

such as speech at different pitch levels, several types of

environmental sounds, human made ambient noises, and

internal body sounds (heavy breathing, speech, rubbing or

accidental movement of stethoscope sensor). In the data set

3 subjects exhibited of arrythmia, 31 had artificial valve, 5

patients exhibited heart murmurs and the rest were healthy.
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In the prepared database, non-cardiac sounds were arranged

in four classes as follows: vocal sounds, breathing sounds,

skin rubbing or abrasion sounds via stethoscope, and other

ambient noise such as foot steps, door knock, etc. Total

number of segments of various durations (20 ms-3 sec)

of non-cardiac sounds were 758 vocal, 232 abrasion, 147

breathing, and 402 others.

For the sake of computational cost each heart sound is

downsampled to 2.20kHz. A window of 4 seconds was taken

to process the heart sounds under this method. This length

of analysis window is found to be sufficient to examine

periodicity in the time and the frequency domain. If the

segment satisfies the conditions to be a periodic segment,

a reference sound is selected. For further processing, a

window of the same length as the reference sound template

is taken to select heart sound and to compare its root spectral

energy to the reference sound. If no reference sound is

detected in the current processing window, the window is

shifted 1 second forward and the process is repeated until a

periodic segment is found. Regarding the processing time

complexity of the algorithm, it was observed that using

Matlab version 7.6(2008a) running on Windows XP using

an Intel(R)Core(TM)2Duo at 2.53 GHz, the first phase of

the algorithm took an average of 1.23 seconds to process

each 4 second window, while in the second phase of the

algorithm only took 0.035 seconds per window.

The achieved noise detection performance of the algorithm

over the given database is shown in Table I for each con-

sidered noise class. Furthermore, the overall sensitivity and

specificity are 95.13% and 98.65%, respectively.

TABLE I

NOISE DETECTION (CORRECTLY DETECTED OVER TOTAL NUMBER OF

NOISY SEGMENTS)

Heart Sound Vocal Abrasion Breathing others

Native valve 524/536 176/178 106/114 309/328

Prosthetic valve 115/120 41/41 24/27 36/44

Murmur 83/92 11/11 3/5 9/12

Arrythmia 9/10 2/2 1/1 15/18

It can be inferred from the Table I that the abrasion

type of noise exhibits high average sensitivity of 98.29% in

four considered classes of heart sounds, whereas breathing

sounds show the least sensitivity of 83.75%. Long duration

(> 50ms) vocal sounds and abrasion are distributed over

large frequency range which shows significant spectral en-

ergy difference from normal heart sound for native valve

subjects. On the contrary, although respiratory sounds are

high frequency sounds, their spectral energy is not notably

different from heart sound which requires more sophisticated

method of signal processing to discriminate [8]. Finally, an

example of noise detection in a heart sound mixed with some

of the aforementioned noises is shown in Figure 5.

IV. CONCLUSIONS

A new algorithm for non-cardiac sound detection in real

time without ECG as a reference signal was proposed. The
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Fig. 5. An example of noise detection in a heart sound sample. The upper
curve is the heart sound and the lower one is the noise detection curve.

algorithm is composed of two main steps: first a reference

signal detection based on the periodic nature of clean heart

sounds. Secondly, this reference signal is compared to the

subsequent recorded heart sounds. The first phase of the

algorithm is slightly computationally intensive. However,

once the reference signal has been detected, subsequent

processing is performed quickly. At this stage, non-cardiac

sounds are segregated from heart sound. This suggests that

the algorithm might be applied for real time application using

low power processing kits.
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