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Abstract— There are millions of people in the U.S. and many
more worldwide who could benefit from a noninvasive-based
electroencephalography (EEG) brain computer interface (BCI).
A BCI is an alternative or augmentative communication method
for people with severe motor disabilities. However, EEG suffers
from poor spatial resolution and signal-to-noise ratio (SNR). To
improve the spatial resolution and SNR many researchers have
turned to implantable electrodes. We have previously reported
on significant improvements in BCI recognition rates using
tripolar concentric ring electrodes compared to disc electrodes.
We now report on a optimal method for combining the outputs
from the independent elements of the tripolar concentric ring
electrodes to improve the spatial resolution further. We used
minimum variance distortionless look (MVDL), a beamformer,
on simulated data to compare the spatial sensitivity of the
optimal combination to disc electrodes and the tripolar concen-
tric ring electrode surface Laplacian. The optimal combination
shows the highest spatial sensitivity with the Laplacian a close
second and disc electrodes resulting in a distant third. Further
analysis is necessary with a more realistic computer model
and then real signals. however it appears that the optimal
combination may improve the spatial resolution of EEG further
which in turn can be utilized to improve noninvasive EEG-based
BCIs.

I. INTRODUCTION

Nearly two million people in the U.S., and many more
worldwide, suffer from severe motor disabilities brought
on by neuromuscular impairments, such as amyotrophic
lateral sclerosis (ALS), brainstem stroke, cereberal palsy and
spinal cord injury (SCI) [1]. For those who have very high-
level paralysis, or are “locked-in”, conventional augmentative
technologies will not help because most of the devices re-
quire some voluntary muscle control [2]. Over approximately
the last 20 years, a new communication method, the brain
computer interface (BCI), has been explored as a valuable
augmentative communication channel. For a communication
system that“does not depend on the brain’s normal output
pathways of peripheral nerves and muscles” [3], a BCI
provides persons who cannot use their muscles but are
cognitively intact with an alternative for communication and
control.

Despite considerable advances, BCI development is still
in its infancy and warrants further considerations to make
a significant impact in most fields [4][5][6]. Implantable
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systems (intracortical electroencephalography (EEG) based
or electrocorticography (ECoG) based), led by the Brain-
Gate device, have better spatial resolution and signal-to-
noise ratio (SNR) and require less time for training but are
associated with increased risks to the patients and technical
challenges. Noninvasive conventional EEG based BCIs, such
as the BCI2000 [2], have minimum risk but suffer from a
reduced spatial resolution and increased noise due to mea-
surements on the scalp [7]. The increased risks associated
with implantable BCIs and the poor spatial resolution of
EEG demonstrate the need to improve the performance of
conventional EEG based BCIs.

Low spatial resolution is a major hindrance in the ef-
fectiveness of conventional EEG. The lack of high spatial
resolution is primarily due to (1) the blurring effects of the
volume conductor; and (2) conventional EEG signals have
reference electrode problems as idealized references are not
available with EEG [8]. To resolve the reference electrode
problems, Nunez et al. [8] proposed a common average
reference and concentric electrodes which act like closely
spaced bipolar recordings. However, in the common average
reference recordings, it is possible that components present in
most of the electrodes but absent or minimal in the electrode
of interest may appear as “ghost potentials” [9].

To improve the spatial resolution of EEG researchers have
relied on the Laplacian, the second spatial derivative of the
scalp potentials. The surface Laplacian produces an image
proportional to the cortical potentials and enhances the high
spatial frequency components of the brain activity close to
the electrode [10]. The application of the Laplacian method
to study EEG began with [11] utilizing a 5-point difference
method. He [12] also used the 5-point difference method
derived from an array of disc electrodes measuring surface
potentials. Other Laplacian techniques include: a) spline
Laplacian algorithm [13], b) the ellipsoidal spline Laplacian
algorithm [14], c) realistic Laplacian estimation techniques
[15], and d) realistic geometry Laplacian algorithms [16].
It was found by [17] that the common average and the
Laplacian derivation, the 5-point difference method, yield
good performance on EEG BCI classification. Babiloni et al.
demonstrated that surface Laplacian transformation of EEG
signals can improve the recognition scores of imagined motor
activity [18].

Laplacian filtering has been proven to be a high-pass filter
for cortical imaging [19][20][21]. Fattorusso and Tilmant
[22] were the first investigators to report the use of concentric
ring electrodes. He and Cohen [23] proposed bipolar concen-
tric ring Laplacian electrodes for measuring the Laplacian
potential directly from the body surface and an array of
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these electrodes were used to create body surface Laplacian
maps for cardiac signals. Besio et al. [24] [25] has reported
on significant improvements in SNR, spatial selectivity, and
mutual information using a tripolar concentric ring electrode
(shown in Fig. 1.) to estimate the Laplacian. The model
for this was to approximate the Laplacian as closely as
possible and to attenuate distant sources sharply. It has also
been reported [26] that tripolar concentric ring electrodes
provided a significant improvement in BCI recognition rates
over conventional disc electrodes.

One possible method to improve BCI would be to improve
the spatial resolution in hopes of discriminating more inde-
pendent sources. In this report we propose a new method
for combining the outputs from the tripolar concentric ring
electrode elements to increase the spatial sensitivity. Analysis
was performed to sharpen the attenuation of distant sources.
The effect of rejecting distant sources is to focus the spatial
filter for local sources. Following are the methods used to
determine the optimal combination of the simulated signals
from the tripolar concentric ring electrode elements.

II. METHOD

To perform a relative comparison of spatial sensitivity be-
tween disc, tripolar concentric, and the optimal combination
a simplified planer model of the head with a single conduc-
tivity was used to calculate the potentials on the electrode
elements of a tripolar concentric ring electrode (Fig. 1.).
The elements of the electrodes were divided into 16 and 32
discrete points for the middle and outer rings, respectively,
with an average taken of all the discrete potentials as the
potential for the element. A unity point source was moved
from r = 0.0 cm to r = 1.5 cm radially from the center
of the electrode. The depth of the point source was 2.0 cm
below the surface of the electrode. The calculated potentials

Fig. 1: Tripolar concentric ring electrode

from the disc, middle ring, and outer ring are s1(r), s2(r)
and s3(r) respectively.

III. OPTIMAL COMBINATION OF TRIPOLAR ELECTRODES

To improve the spatial sensitivity, and thereby the spatial
resolution, as much as possible we need to derive an al-
gorithm to combine the three simulated signals to optimize
the spatial cutoff. For this application we adjust the weights
w = [w1, w2, w3]T , so that the magnitude of the signals in

the region of interest, which is around r = r0, where r0
is an unknown radial distance to the source that we would
like to detect and r is the radius from the tripolar concentric
electrode, would be distinguished. To determine the weights
we used minimum variance distortionless look (MVDL), a
beamformer [27] to maximize P (w):

P (w) =
(
∑3

i=1 wisi(r0))2∫ r

0
(
∑3

i=1 wisi(r))2dr
(1)

We first form the sum:

x(r) =
3∑

i=1

wisi(r) (2)

where w = [w1, w2, w3]T are the weights for the signals
from the three different elements of the electrode. For the
maximum output at r = r0 we constrain x(r0) = 1 so that

x(r0) =
3∑

i=1

wisi(r0) = 1 (3)

Then to maximize P (w) we consider J(w):

J(w) =
∫ r

0

(
3∑

i=1

wisi(r))2dr (4)

and minimize J(w) over w = [w1, w2, w3]T . To do this, let
s(r) = [s1(r), s2(r), s3(r)]T and:

J(w) = wTCw (5)

In which,

C =
∫ r

0

s(r)sT (r)dr (6)

Now we must minimize J(w) and the solution can be
obtained from (3) and (5) using the Lagrange multiplier:

F (w) = wTCw + λ(wT s(r0)− 1) (7)

Where we perform the gradient:

∂F

∂w
= 2Cw + λs(r0) = 0 (8)

However, since x(r0) =
∑3

i=1 wisi(r0) = 1, which means
wT s(r0) = 1, then the solution takes the form of:

wopt =
C−1s(r0)

sT (r0)C−1s(r0)
(9)

And the combined signal is:

x(r) =
sT (r)C−1s(r0)
sT (r0)C−1s(r0)

(10)

Which is the optimized combination of the signals from the
tripolar concentric ring electrode elements.
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IV. RESULTS

The potentials for a 1.0 cm diameter tripolar concentric
ring electrode shown in Fig. 1 were calculated and squared
for a point source that was 2.0 cm below the surface of the
plane of the electrode. The point source was moved from
r = 0, the center of the middle disc, to r = 1.5 cm. As would
be expected with a spacing of 1.0 mm between the electrode
elements there is very little difference in amplitude of the
signals as seen in Fig. 2. The units are normalized squared

Fig. 2: A comparison of the normalized squared potentials
calculated for the three elements of the tripolar concentric
ring electrode. It can be seen that there is little relative
difference between each element.

potential to show the relative differences. In Fig. 3 there is
a comparison of the radial roll off of the Laplacian spatial
filter, the optimal combination, and a disc electrode. The

Fig. 3: A comparison of the radial roll off for the Laplacian
spatial filter, the optimal combination, and the disc electrode.

Laplacian spatial filter was reported by [24] and formulated
by:

L = 16 ∗ (Pmiddle− Pdisc)− (Pouter − Pdisc) (11)

Where Pmiddle, Pdisc, and Pouter are the potentials on the
middle ring, central disc, and outer ring, respectively. The

potentials for the disc were calculated by summing the poten-
tials of the three individual elements of the tripolar electrode
and dividing by three to get the average of the potentials.
We can see from Fig. 3 that the optimal combination forms
a steeper roll off that reaches zero at approximately 0.4
cm, before the outer radius of the electrode (0.5 cm). The
Laplacian spatial filter reaches zero at 0.55 cm, just beyond
the outer radius of the electrode. In comparison the disc
electrode does not reach zero even after 3 radii, 1.5 cm.
It can also be seen that the side lobe of the Laplacian spatial
filter is larger than the one for the optimal combination. A
perfect spatial filter would remain flat at zero beyond the
space that it passes signals from.

V. DISCUSSION/CONCLUSION

We previously showed that tripolar concentric ring elec-
trodes provide significantly better spatial selectivity over
bipolar concentric ring electrodes and conventional disc
electrodes [24]. With the optimal combination showing the
steepest roll off and least ringing in the side lobes it should
result in the best spatial resolution of the different methods
that we have analyzed.

Observing Fig. 3, if our region of interest is directly under
the electrode, we can see that if a source is beyond the radius
of the electrode by one radius (1.0 cm) then the Laplacian
spatial filter only passes approximately 10% of the power
and the optimal combination attenuates nearly all of the
power. However, the disc electrode is not vary discriminating
it would pass approximately 50% of the power of a source
located in an area outside of the region of interest.

It should also be noted that we used a simplified model to
calculate the potentials for the electrodes. It was a single
conductivity model and no noise was added. The results
may vary if these circumstances are changed. In particular,
if a multiconductivity model was used which distorts the
potentials on the surface the disc electrode roll off would be
even worse. The Laplacian spatial filter may not be affected
as severely since it takes the second spatial derivative of the
potentials which results in potentials that are proportional
to those of the source modeled on the brain. Adding noise
would also alter the signal from disc electrodes but as we
showed in [28] for the tripolar concentric ring electrode
Laplacian if the noise is correlated between the elements it is
attenuated sharpley. In conclusion, the MVDL beamformer
provides the optimal radial roll off of the methods we have
tested. This increased spatial sensitivity should also increase
the spatial resolution of the tripolar concentric ring electrode.
Further work must be completed to verify the results still
hold true in the presence of noise and with a more realistic
multiconductivity model.
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