
  

  

Abstract—Analysis of extracellular neural spike recordings is 
highly dependent upon the accuracy of neural waveform 
classification, commonly referred to as spike sorting. Feature 
extraction is an important stage of this process because it can 
limit the quality of clustering which is performed in the feature 
space. This paper proposes a new feature extraction method 
(which we call Graph Laplacian Features, GLF) based on 
minimizing the graph Laplacian and maximizing the weighted 
variance. The algorithm is compared with Principal 
Components Analysis (PCA, the most commonly-used feature 
extraction method) using simulated neural data. The results 
show that the proposed algorithm produces more compact and 
well-separated clusters compared to PCA. As an added benefit, 
tentative cluster centers are output which can be used to 
initialize a subsequent clustering stage. 

I. INTRODUCTION 
HE acquisition and analysis of neural action  potentials 
(spikes) is of fundamental importance in many areas of 

neuroscience. Results from such analyses can be used in 
applications such as neural prosthetics, brain-machine 
interfaces, pharmacology, etc.   

In such applications, the neural signal tends to be noisy, as 
it records not only the spikes from neurons near the 
recording electrode, but also the activities of more distant 
neurons.  Hence, it is necessary to extract the spikes from 
that noisy signal and then classify them in groups (clusters), 
each cluster corresponding to one nearby neuron.  This 
process is known as spike sorting.  

In spike sorting, the spikes are detected in the digitized 
signal, the extracted spike waveforms are projected into a 
lower-dimensional feature space, the number of neurons 
generating those spikes is determined, and each spike event 
is assigned to a neuron. 

At the spike detection stage, spike events are detected 
using one of a number of possible techniques, the most 
popular among them being amplitude thresholding [1]. The 
spike detection algorithms usually assume a maximum 
duration (length) for spikes. This length may vary typically 
from 0.5 to 4 milliseconds depending on the nature of the 
 

Manuscript received April 7, 2009. This work was supported by Plexon 
Inc. Patent Pending by Plexon Inc. 

Y. Ghanbari is with the Department of Electrical Engineering, Southern 
Methodist University, Dallas, TX 75275 USA (phone: 1-214-768-3783; fax: 
214-768-3573; e-mail: yghanbari@smu.edu).  

L. Spence is with Plexon Inc, Dallas, TX 75206 USA, (e-mail: 
larry@plexoninc.com). 

P. Papamichalis is with the Department of Electrical Engineering, 
Southern Methodist University, Dallas, TX 75275 USA (e-mail: 
panos@lyle.smu.edu). 

 

neurons being recorded. All the spikes are then represented 
as digitized waveform segments. Therefore, each detected 
digitized spike constructs a vector of length n=0.5×10-3×fs to 
4×10-3×fs where fs is the sampling frequency. Now, each of 
the n-length spike vectors represents a point in an n-
dimensional space of raw sample values. Since clustering in 
the n-dimensional space is computationally expensive and 
difficult to visualize, and because we conjecture that the 
spike waveforms may be accurately classified in a feature 
space of low dimensionality, a feature extraction stage is 
employed to reduce the dimensionality of each spike vector, 
n, to a d-length feature vector (d<<n where, usually, d = 2 or 
3) so that the clustering is performed in the d-dimensional 
space. This dimensionality reduction can be expressed by the 
linear projection: 

,11 ××× = n
T

dnd xAy                (1) 
where the elements of y correspond to the dimensions of the 
feature space that will be used for clustering. The most 
popular algorithms proposed for dimensionality reduction 
include Principal Components Analysis (PCA) [1], wavelet-
based techniques [2,6], and others. 

The next stage involves determining the number of firing 
neurons and assigning each spike (as represented by its 
projection in feature space) to its originating neuron. Typical 
clustering algorithms used for spike classification include K-
means [3], Bayesian clustering [1], and others. 

This paper introduces a new feature extraction algorithm 
for neural spike sorting and describes the results of applying 
it to simulated neural data. The generated clusters are 
visually compared with PCA clusters and a cluster-validity 
metric is used to assess the performance of these two 
techniques over several test cases. The improvement is 
shown to be considerable on the test data. 

II. PROPOSED ALGORITHM 
Principal components analysis (PCA) is the most popular 

technique among spike feature extraction methods. 
However, the fact that the PCA assumes the best separation 
to happen along the direction of the largest variance may not 
be true in many cases. Therefore there is a need for an 
algorithm which considers some other criteria to generate 
more accurate results. This leads us to define a new cost 
function instead of merely maximizing the variance as in 
PCA. 

A. Graph Laplacian  
Suppose that there are N spikes, each of length n, detected 
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at the first stage of the sorting process. Each n-length spike 
represents a data point xi in an n-dimensional space, 1≤i≤N. 
It is desirable that the points that are close to each other in 
the original n-dimensional space remain close to each other 
after projection to the d-dimensional space. This will help 
insure that the resulting clusters in the d-dimensional feature 
space are compact and well separated.  

Based on concepts from spectral graph theory [4], we note 
that the n-dimensional points (spikes) induce a graph G with 
edges connecting spikes that are near each other in the 
original space. To construct an appropriate weighted graph 
G with N nodes, two steps are required [5]: 

Step 1. We put an edge between nodes i and j if xi and xj 
are close, where closeness is measured by a distance 
metric dist(xi,xj). In this work, we use the K-nearest-
neighbors approach [5] where nodes i and j are 
connected by an edge if i is among the K nearest 
neighbors of the node j, or j is among the K nearest 
neighbors of the node i. K is a parameter we choose 
for the algorithm. 

Step 2. To choose the weights for the edges, we use the 
heat-kernel method [5]. In this approach, if nodes i 
and j are connected, the edge weight Wij is defined as: 

( ( )[ ] ),,
exp
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where xi and xj are points in the n-dimensional space, 
dist(xi,xj) represents a distance metric between xi and 
xj, and Wij is the weight of the edge of the graph 
between the points xi and xj. This weight formula is 
used for at least the K edges with the smallest 
distance. For the other edges Wij=0. The parameter tij 
is a real number that will be discussed later. The Wij 
can be considered as elements of a similarity matrix 
W. 

Let A be the transformation matrix for projecting each n-
dimensional data point xi to a d-dimensional feature point yi 
as shown in Equation (1). An appropriate transformation 
matrix A can be obtained by solving the following 
minimization problem: 
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where yi=ATxi and C1(A) is the cost function to be 
minimized. This cost function will be minimized if the 
nearby points xi and xj are projected into nearby points yi and 
yj.  

Now, we define a diagonal matrix D as the sum of the 
columns (or rows) of W: 
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The cost function C1(A) can be rewritten as: 
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Substituting Equation (1) into Equation (5) yields: 
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where NnNxxxX ×= ],,,[ 21 . The term L=D-W is called 
the Laplacian matrix [4,5] of the graph G. L is a symmetric 
positive semidefinite matrix.  

B. Weighted Variance 
In addition to minimizing the cost function C1(A), we 

wish to maximize the variance of the d-dimensional feature 
points (similar to PCA) in order to maximize cluster 
separation. Based on Equation (4) Dii is the sum of the 
similarities of xi to its K nearest neighbors in the n-
dimensional space. Therefore, assuming clusters whose 
density is highest near their centers, the greater the Dii value 
of a point xi, the more likely it is to be near the center of the 
cluster containing it. This leads us to take advantage of the 
fact that the points xi which are near their cluster centers 
should contribute more in variance calculation compared to 
the xis which are outliers or noise. 

We note that those points xi with the highest Dii values 
within each connected nearest-neighbor subgraph can serve 
as tentative cluster centers, as well as indicating the number 
of clusters, for a subsequent clustering stage.   The quality of 
the results of many clustering algorithms, such as K-means 
and mixture-of-Gaussians, is improved greatly by specifying 
the number of clusters and the cluster centers in advance. 

Assuming that the feature points have a zero mean, the 
weighted variance can be defined based on spectral graph 
theory [4] as follows: 
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Therefore, the second objective function can be defined as: 
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C. Optimization Problem and Solution 
Since the weighted distance of nearby feature points are to 

be minimized while the weighted variance is to be 
maximized, we can define the optimization problem as the 
minimization of the ratio of C1(A) to C2(A) as follows: 
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The above cost function can be minimized using the 
eigenvalue-eigenvector decomposition of: 

( ) ( ) ,aXDXaXLX TT λ=           (10) 
where λ is the eigenvalue corresponding to the eigenvector 
a . The eigenvector which corresponds to the smallest 
nonzero eigenvalue in Equation (10) will minimize the cost 
function. This equation can be simplified to:  

( ) ( )( ) .1 aXDXaXWX TT λ−=         (11) 
Since the minimum λ corresponds to maximum λ′=1-λ, the 
problem can be reformulated to solve for the largest 
eigenvalue of the following generalized eigen-problem:  

( ) ( ) .aXDXaXWX TT λ′=          (12) 
The solution to Equation (12) includes n eigenvalues 
[λ′1,λ′2,…,λ′n] where 1≥λ′1≥λ′2≥…≥λ′n. The transform matrix 
A is then constructed as the eigenvectors corresponding to 
the d largest λ′≠1 (or smallest nonzero λ).  

III. EXPERIMENTS AND RESULTS 
In order to investigate the performance of the proposed 

algorithm for feature extraction of neural spikes and 
compare it with the PCA technique, we used simulated data. 
The simulated data is labeled with the originating neuron for 
each spike. This makes visual evaluation of the resulting 
clusters easier and allows us to compute a numerical cluster 
validity metric for each dataset and feature extraction 
method.  

The simulated data provided with the Wave_clus software 
[8] were used in this work for test and comparison purposes. 
There are three advantages in using this test data: First, it 
was independently generated, second its characteristics 
closely resemble those of actual in vivo neural signals as 
mentioned by its developer in [6], and third it can be used by 
other investigators as a basis for comparison between 
various algorithms. The simulated dataset here includes four 
sets (with three templates in each) and each set was used to 
generate simulated continuous noisy neural signals with 
different levels of noise (different SNRs.) The number of 
spikes in each simulated noisy signal varies between 
approximately 3200 and 3500. These sets are provided in 
MATLAB .mat files named C_Easy1_noise*.mat, 
C_Easy2_noise*.mat, C_Difficult1_noise*.mat, and 
C_Difficult2_noise*.mat, where the asterisk is a place-
holder for a number indicating the noise level.   

In this work, each noisy test signal provided by 
Wave_clus is loaded and a standard amplitude thresholding 
algorithm is employed for spike detection. All the detected 
spikes are waveform segments of 40 samples in length 
(n=40). 

The detected spikes are then aligned based on the location 
of the maximum absolute amplitude peak and the aligned 
spikes are used for feature extraction. Both PCA and the 
proposed method are used for reducing the dimensionality 
from n=40 to d=3 and the best 2-D view for each of the 
methods is provided for visual comparison.  

The PCA technique applies the eigenvalue-eigenvector 
decomposition to the covariance matrix Σ=XXT and the three 
40-length eigenvectors corresponding to the three largest 
eigenvalues are selected to construct A40×3.  

The algorithm described in section (II) requires 
appropriate values for certain parameters. In constructing the 
graph G, we set K =5 to form edges between each node i of 
the graph and its five nearest neighbors. Our experiments 
show that the algorithm is robust to this parameter when 
values greater than five are used. For the similarity matrix 
W, the distance metric used in this work is the Euclidean 
distance. The parameter tij is proposed in [7] to be calculated 
as follows: 

( ),,; Kiijiij xxdistt == σσσ        (13) 

where xK is the Kth nearest neighbor to xi and here K=5 as 
explained before. 

The dataset “C_Difficult1_noise*.mat” which includes 
four simulated noisy signals with different levels of noise is 
used here for visual assessment of feature extraction. The 
amplitude thresholding algorithm detects more than 3300, 
3360, and 3020 spikes for the noise variances of 0.05, 0.10, 
and 0.15, respectively. PCA and the proposed algorithm are 
applied to the peak-aligned detected spikes to reduce the 
dimensionality of all the spikes from 40 to 3. For brevity, we 
call the graph Laplacian features as “GLF”. Both the PCAs 
and the GLFs are plotted in Figure 1 for the noise levels of 
0.05, 0.10, and 0.15. The fourth simulated signal in this set, 
with a noise level of 0.20, was also tested and did not show 
any difference between PCA and GLF, and is therefore not 
shown here (all the clusters merge together in both feature 
spaces.) The 2-D plots of the best two features (among three) 
which represent the best cluster separation in both PCA and 
GLF are selected to be shown in Figure 1. Here, among 
these three test cases the best features shown in all the PCA 
cases is the first and the second features while for GLF they 
are the second and the third ones. 

A quantitative metric that can be used to assess the 
clusters generated by applying the two methods to the 
labeled data is the cluster validity measurement. We use the 
ratio of inter-cluster distance to intra-cluster distance 
suggested in [6] as the quantitative metric of cluster validity. 
This ratio is defined as: 
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where zi is the centroid of the cluster Ci, C is the number of 
clusters (here C=3), y vectors are the cluster members (here 
3-D feature vectors), and N is the number of points, which is 
equal to the number of detected spikes. The first goal in this 
expression is to maximize the inter-cluster distance which is 
defined as the minimum Euclidean distance of the cluster 
centers. The second goal is to minimize the intra-cluster 
distance, defined by the summation of the Euclidean 
distances of the members of each from each other. 
Therefore, the greater the Validity value is, the more distinct 
the clusters are.  

This quantitative metric is applied to all four datasets for 
noise levels of 0.05, 0.10, 0.15, and 0.20 and the cluster 
validity metric is calculated for the 3-D clusters generated by 
both PCA and GLF. The results are plotted in Figure 2. As 
can be seen from these plots, the GLF method gives better 
clustering results than PCA.  

 
 
 

IV. CONCLUSION 
The proposed method of feature extraction for spike 

sorting was shown to outperform PCA over the simulated 
test cases. The locality-preserving property of the cost 
function tends to produce compact clusters, while the 
calculation of variance weighted by local density (and 
therefore proximity to a cluster center) is robust to outliers 
and produces well-separated clusters. The mutual 
satisfaction of these two goals leads to a new optimization 
problem whose solution results in a feature extraction 
method that yields improved cluster quality compared to 
PCA.  As a by-product, the method outputs the number and 
location of tentative cluster centers, which can be used to 
initialize a clustering algorithm. 
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Figure 2. The cluster validity measurements for 3-D PCA and GLF 
obtained from four simulated datasets with different levels of noise: 
(a) “C_Easy1_noise*.mat”; (b) “C_Easy2_noise*.mat”; (c) 
“C_Difficult1_noise*.mat”; (d) “C_Difficult2_noise*.mat”.  

Figure 1. The PCA and GLF obtained from the simulated data 
“C_Difficult1_noise*.mat” with different levels of noise: (a) and (b) 
0.05; (c) and (d) 0.10; (e) and (f) 0.15. 
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