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Abstract— In this paper, we propose a new blind multi-
channel adaptive filtering scheme, which incorporates a partial-
updating mechanism in the error gradient of the update equa-
tion. The proposed blind processing algorithm operates in the
time-domain by updating only a selected portion of the adaptive
filters. The algorithm steers all computational resources to filter
taps having the largest magnitude gradient components on the
error surface. Therefore, it requires only a small number of
updates at each iteration and can substantially minimize overall
computational complexity. Numerical experiments carried out
in realistic blind identification scenarios indicate that the
performance of the proposed algorithm is comparable to the
performance of its full-update counterpart, but with the added
benefit of a highly reduced computational complexity.

I. INTRODUCTION

In recent years, blind source separation (BSS) has

received much attention due to its strong potential for

use in a variety of applications, such as automatic speech

recognition, hearing aid devices and hands-free telephony.

In scenarios where the signals of interest are mixed with

other ongoing background activity and noise, BSS can be

used to extract and perceptually enhance the waveform

of the desired sound source(s) from a set of composite

signals. By definition, BSS recovers estimates of n sources

with very little to almost no prior knowledge about the

source-to-sensor geometry or the source signal themselves.

Instead, it relies only on information collected from a set of

m convolutive data x(t) = [x1(t), . . . , xm(t)]
T
∈ IRm

x(t) =
∞∑

ℓ=0

Hℓ(t) s(t − ℓ), t = 1, 2, . . . (1)

where Hℓ(t) represents the unknown but linear-time invariant

(LTI) multiple-input multiple-output (MIMO) mixing system

at discrete time t and lag ℓ. The ‘blind’ recovery of the

original sources then boils down to a multichannel inverse

filtering task whereby the coefficients of an L-dimensional

finite impulse response (FIR) equalizer Wℓ(t) are adjusted

such that the output vector u(t)=[u1(t), . . . , un(t)]
T
∈ IRn

u(t) =
L−1∑

ℓ=0

Wℓ(t)x(t − ℓ), t = 1, 2, . . . (2)

defined for all 0 ≤ ℓ ≤ L − 1. Nevertheless, since the
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computational complexity of any adaptive filtering algorithm

is proportional to its tap length, time-domain multichannel

BSS algorithms can become computationally prohibitive

especially for applications that require a large number of

filter taps (e.g., see [1], [2]).

To reduce excessive computational requirements, many

authors have recently suggested to carry out the separation

task in the frequency or the sub-band domain (e.g., see [3]–

[4], [5]). By doing so, the overall BSS task can be elegantly

reduced into several independent instantaneous problems,

one for each frequency subband. Still such strategies come

with perils of their own, namely scaling and permutation am-

biguities, which usually have a negative effect on separation

performance [6]. Another strategy for reducing the length

of the inverse FIR filters is to simply increase the number

of microphones present in the system. In setups where

the system sensors available outnumber the active sources,

the inverse FIR filters can be chosen to be significantly

shorter 1 than the length of the acoustic impulse responses

[7]. Nonetheless, the design requirements in modern digital

signal processors (DSPs), for example such as those used in

hearing aids and cochlear implant devices [8], often dictate

a low power consumption in battery operated equipment and

also call for a portable weight in a compact size. Naturally,

such design constraints prevent the use of BSS and other

similar pre-processing techniques on portable devices since

they (1) prohibit large amounts of processing power and (2)

limit the number of microphones that can be made available

to the user.

A far more efficient alternative to lower the overall com-

putational complexity of BSS is to resort to selective-tap (or

partial) updating schemes. Such schemes operate by updat-

ing only a subset of the total number of filter coefficients on

every iteration and hence can lead to a substantially reduced

complexity. Early examples of selective-tap techniques in-

clude the sequential and periodic least-mean-squares (LMS)

[9] and more recently the MMax normalized least-mean-

squares (MMax-NLMS) [10], [11], whereby the updated

taps are the ones associated with the largest magnitude

gradient components on the error surface. In this paper,

we extend the MMax tap-selection criterion and derive a

novel selective-updating blind scheme based on the natural

gradient algorithm (S-NGA). The potential of the proposed

low-complexity algorithm is verified and assessed through

numerical simulations in realistic acoustical scenarios.

1For example in a two-source and three-sensor configuration convolved
with 1,024 sample point acoustic impulse responses, the lower bound for
the FIR filter length L yielding a perfect system inverse can decrease to
around 512 taps, if we assume that the number of microphones doubles.
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II. SELECTIVE-TAP BLIND SOURCE SEPARATION

A. Natural Gradient Algorithm

Spatial independence is a key assumption for BSS. In short,

it implies that the output joint probability density function

(PDF) pu(u(t)) is equal to the product of the output PDFs

pu(u(t)) =
n∏

i=1

pui
(ui(t)). (3)

A simple way to check for independence is to measure the

distance between the two sides of (3) with an appropriate

distance measure such as the Kullback-Leibler (K-L)

divergence. Alternatively, we can resort to the maximum

likelihood (ML) principle and choose to optimize the

negative log-likelihood (objective) function with respect to

the unmixing matrix Wℓ such that

Ji(ui) = −
n∑

i=1

E [ log pui
(ui) ] − log |det(Wℓ) | (4)

Due to the Riemannian nature of the optimization parameter

space, a less computationally burdensome choice to

minimize the cost function in (4) with respect to the

unmixing matrix Wℓ is the so-called natural gradient [12],

which is an optimal re-scaling of the standard (stochastic)

entropy gradient (e.g., see [13]). For multipath conditions

where L > 1, the natural gradient algorithm (NGA) is

given by [1]–[2], [12]

Wℓ(t + 1) = Wℓ(t) + ∆Wℓ(t) (5)

∆Wℓ(t) = µ
[
Wℓ(t) − ϕ(u(t))ũH(t − ℓ)

]
(6)

ũ(t) =
L−1∑

k=0

WH
L−1−k(t) u(t − k) (7)

where 0 < µ < 1 is a positive learning parameter

controlling the rate of convergence and rate of adaptation,

(·)H is the Hermitian operator and symbol ϕ(·) represents

the nonlinear monotonic activation (or score) function

operating elementwise on the output signal vector, such

that 2

ϕ(u(t)) , [ϕ1(u1(t)), . . . , ϕ1(u1(t − L + 1)), . . . ,

ϕn(un(t)), . . . , ϕn(un(t − L + 1)]T (8)

2Instead of using the definition in (8), we could re-write the update in
(6) as ∆Wℓ(t) = µ

[
Wℓ(t) − ϕ(u(t − L + 1)) ũ

H(t − ℓ)
]

whereby we
are introducing the (L−1)-sample delay in term u(t) to accommodate for
non-causal parts of the equalizer filters [12].

where

ϕi(ui) = −
∂ log pui

(ui)

∂ui
, i = 1, 2, . . . , n. (9)

with pui
(ui) denoting the PDF of each source estimate ui.

Note also that vector ũ(t) represents the reverse-filtered out-

put computed by using the latest (L−1)-samples backwards

from the current sample t for all lags ℓ = 0, 1, · · · , L − 1

as shown in (7).

B. Selective-Natural Gradient Algorithm

When approaching convergence, ∆Wℓ(t) ≃ 0, assuming a

sufficiently small step-size. The stationary points of (6) can

guarantee both temporal and spatial statistical independence

under the following two conditions

E
[
ϕi(ui(t))u∗

j (t − ℓ)
]
=

{
δℓ, ∀ ℓ 6= 0 and i = j

0, ∀ t, ℓ and i 6= j
(10)

where E [ · ] is the statistical expectation, (·)∗ represents the

complex-conjugate operator and δℓ is the Kronecker delta,

which is equal to 1 for ℓ = 0 and equal to 0 otherwise.

As it can be seen from (10), the convergence behavior of

the NGA depends solely upon the magnitude of the so-

called estimating function at each iteration, which is equal to

Rℓ(t) = E
[
ϕ(u(t))uH(t − ℓ)

]
(11)

for lags ℓ = 0, 1, · · · , L − 1. Since the above estimating

function is not equally sensitive to variations from all the

updated filter coefficients, a tap-selection criterion can be

constructed by employing only M out of L coefficients with

the largest values of |Rℓ(t)| for all lags ℓ = 0, 1, · · · , L− 1,

at each iteration. The subset of the filter coefficients to be

partially updated at any particular time t is specified in the

(n L×m L) matrix Q(t), which is coined the tap selection

matrix, and is given by

Q(t) ,




diag [q
11

(t)] . . . diag [q
1m(t)]

...
. . .

...

diag [qn1
(t)] . . . diag [qnm(t)]


 (12)

where each element of the tap-selection matrix is given by

qij(t) , [qij(t), qij(t − 1), . . . , qij(t − L + 1)]
T

(13)

such that, after dropping the time index t for convenience,

qij(τ) =

{
1, if |r

ℓ
(τ) | ∈

[
M maxima |Rℓ(t) |

]

0, otherwise
(14)

where | · | denotes absolute value and r
ℓ
(τ) are the elements

of (11) at the (sorted) indices τ = 0, 1, . . . , L − 1. Every

element qij(τ) is either equal to one or zero, depending on
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whether the condition in (14) is satisfied or not. In order

to calculate the filter coefficients that are to be updated

at different time instants, a fast sorting algorithm needs

to be executed at every iteration [14]. After the sorting

is performed, each block of the tap selection matrix Q(t)
contains M < L coefficients equal to one in the positions

(or indices) calculated from (14) and zeros elsewhere, such

that

M = trace [Q(t)] (15)

where operator trace[ · ] denotes the sum of the diagonal

elements of the input matrix argument. Accordingly, to

update only M taps in the equalizer Wℓ(t), we can write

the selective-natural gradient algorithm (S-NGA), as follows

W̃ℓ(t + 1) = W̃ℓ(t) + ∆W̃ℓ(t) (16)

∆W̃ℓ(t) = λ
[
W̃ℓ(t) − ϕ(ũ(t))ỹH(t − ℓ)

]
(17)

ỹ(t) =
M−1∑

k=0

W̃H
M−1−k(t) ũ(t − k) (18)

ũ(t) =
M−1∑

k=0

Q(t) u(t − k) (19)

where parameter λ represents the new learning rate. Note that

for M = L, the S-NGA algorithm in (16)–(19) reduces to

the full-update NGA algorithm given in (5)–(7). In general,

the separation performance of the S-NGA depends on the

degree of coefficient reduction achieved and therefore on the

overall number of the sorted filter taps in W̃ℓ(t).

III. EXPERIMENTAL METHODOLOGY

A. Material

To assess the performance of the S-NGA, five male

speakers are corrupted by interfering speech. The signals

are chosen from the IEEE speech corpus, which consists of

phonetically balanced sentences, with each sentence being

composed of approximately 7 to 12 words (e.g., see [15]).

Every sentence produced by a male talker is designated

as the target speech. To simulate the speech interferer or

competing voice in this experiment, a female talker uttering

the sentence “Tea served from the brown jag is tasty” is

chosen as the interferer (or masker) source. The source

signals are approximately 4 s in duration and are recorded at

a sampling rate of 8 kHz. A set of five convolutive speech

mixtures are produced by convolving the clean signals with

the two binaural room impulse responses (BRIRs) depicted

in Fig. 1 (a) and (b) (e.g., see [16]). The length of the acoustic

impulse responses is 2,048 sample points, corresponding to

a delay of around 256 ms at a sampling rate of 8 kHz.
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Fig. 1. Impulse responses of the cross-channel acoustic paths measured in
a small classroom. (a) Impulse response corresponding to the acoustic path
from the target source to microphone 2. (b) Impulse response corresponding
to the acoustic path from the female masker to microphone 1. The sampling
rate is 8 kHz.

In order to simplify the estimation problem, the channel

distortions from the target source to microphone 1 and from

the female masker to microphone 2 are assumed negligible.

The BRIRs are measured in a 5 × 9 × 3.5 m ordinary

classroom using a KEMAR positioned at 1.5 m above the

floor and at ear level [16]. The broadband reverberation time3

of this enclosure is equal to TR = 200 ms, which is a typical

value for a moderately reverberant environment. Both speech

signals have the same onset and are normalized so that

their maximum amplitude is unity. By convolving the speech

signals with these pre-measured impulse responses, the target

male is positioned directly at the front of the listener at a 0◦

azimuth, whereas the female interferer is placed at an angle

of 60◦ to the right.

B. Performance Evaluation

The S-NGA is executed with L = 2,048, whereas M is

set to 2,048, 1,024, 512 and 256 taps. The learning rates

are explicitly tuned to yield the maximum possible steady-

state performance. In all cases, the equalizer is initialized

using a center-tap scheme, such that Wℓ(0) = δℓ−M/2 I. The

algorithm operates with the hyperbolic tangent score function

ϕi(ui) = tanh (ui) and converges after approximately 20

passes through the convolutive speech data. To assess separa-

tion performance we resort to the signal-to-interference-ratio

improvement (SIRI). SIRI is defined as the overall amount of

crosstalk reduction achieved by the algorithm before (SIRi)

and after (SIRo) the unmixing stage and is described in [2].

3The parameter TR defines the interval in which the reverberating sound
energy, due to decaying reflections, reaches one millionth of its initial value.
In other words, it is the time it takes for the reverberation level to drop by 60
dB below the original sound energy present in the room at a given instant.
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IV. RESULTS AND DISCUSSION

We test the S-NGA on a set of convolutive speech mix-

tures generated using the pre-measured impulse responses

in Fig. 1. Table I contrasts performance and reduction in

complexity relative to the complexity of the full-update

algorithm. As expected, the full-update NGA yields the

best SIRI performance. In addition, even when the S-NGA

operates with a reduced number of filter coefficients at

every iteration, it exhibits only a slightly lower separation

performance. SIRI values indicate that the overall degree

of separation remains unchanged for M = 1,024. In fact,

even when setting M = 512, which accounts for a 75%

reduction in the total equalizer length (with a processing

delay of just 64 ms at 8 kHz) and around 40% reduction in

computational complexity, the algorithm manages to retain

almost 80% of its full-update counterpart performance. The

overall computational complexity of the S-NGA in terms

of floating point operations per second (FLOPS) is around

50% less when only 3/16 of filter coefficients (amounting

to a 81.25% reduction) are adapted at every iteration. In

all cases, to ensure that the complexity due to coefficient

selection is kept low, we use a fast sorting routine (e.g.,

see SORTLINE [14]), which only requires an additional

log
2
L + 2 tap comparison operations per sample.

V. CONCLUSIONS

We have developed a selective-updating BSS scheme (S-

NGA), which can learn multiple filters at a substantially re-

duced computational overhead, while retaining a satisfactory

separation performance. Experiments in reverberant settings,

show that the overall tradeoff between filter length reduction

and performance loss is acceptable. The S-NGA has great

potential for use in portable devices, e.g., hearing aids and

cochlear implants, since it can operate with considerably

shorter filters and still equalize long acoustic echo paths with

sufficient accuracy.
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