
  

  

Abstract—This paper assesses the use of Independent 
Component Analysis (ICA) as applied to epileptic scalp 
electroencephalographic (EEG) recordings. In particular we 
address the newly introduced Spatio-Temporal ICA algorithm 
(ST-ICA), which uses both spatial and temporal information 
derived from multi-channel biomedical signal recordings to 
inform (or update) the standard ICA algorithm. ICA is a 
technique well suited to extracting underlying sources from 
multi-channel EEG recordings – for ictal EEG recordings, the 
goal is to both de-noise the EEG recordings (i.e. remove 
artifacts) as well as isolate and extract epileptic processes. As 
part of any ICA application, there is an interim stage whereby 
relevant components (or processes) need to be identified – 
either objectively or subjectively (usually the latter). In 
previous work with ST-ICA we used spectral information alone 
to identify the underlying processes subspaces extracted by the 
ST-ICA. Here we assess the joint use of spatial as well as 
spectral information for this purpose. We test this on ictal EEG 
segments where it can be seen that different underlying 
processes possess characteristic signatures in both modalities 
which can be utilized for the clustering (or process selection) 
stage. 

I. INTRODUCTION 
lectroencephalography is a valuable tool for the 
diagnosis and prognosis of epilepsy, a potentially 

debilitating disorder characterized by sudden and recurrent 
brain dysfunction known as epileptic seizures. Multi-
channel electroencephalographic (EEG) recordings are often 
acquired in dedicated Epilepsy Monitoring Units to be 
visually inspected by clinical experts whom, through 
training and experience, extract features of relevance from 
the recordings. One of the aims of this exercise is to identify 
the region(s) of the brain where the seizure is at its onset and 
to determine which brain regions are activated during the 
course of the seizure. This is essential for cases which are 
candidates for surgery. However, such manual inspection is 
often a long and cumbersome process since seizure 
components are superimposed on noisy ‘ongoing’ 
background EEG. The seizure level is below this ongoing 
level at seizure onset and is then contaminated by strong 
ocular, muscular and cardiac activity as well as disturbances 
from electrode movements as the seizure evolves.  

Over the years ensemble (spatial) independent component 
analysis (E-ICA) [1] has been successfully employed to de-
 

*C.J. James is with the Signal Processing and Control Group, ISVR, 
University of Southampton, SO17 1BJ, UK, (Tel: +44 (0)2380 593043; 
Fax: +44 (0) 23 8059 3190; e-mail: C.James@soton.ac.uk). C. Demanuele is 
with the Signal Processing and Control Group, ISVR, University of 
Southampton, SO17 1BJ, UK (cd3@soton.ac.uk). 

 

noise and extract seizure components, manifest 
predominantly as rhythmic activity, from the raw scalp 
multichannel EEG [2]. E-ICA is a statistical technique 
which performs Blind Source Separation (BSS) on linear 
mixtures of statistically independent sources in order to 
isolate spatially distinct independent components (ICs) from 
the data. However, this technique is limited by the fact that 
each extracted IC has a spatial topography that is fixed in 
time, whereas the seizure focus may change over time and 
its activity may spread to other brain areas. Consequently, 
spatio-temporal techniques are of great clinical relevance for 
the analysis of ictal EEG, where the multi-dimensional 
nature of the recordings in addition to the rich dynamical 
time structure of EEG data can be used to track changes in 
the spatial distribution and morphology of the epileptic 
sources over time. In [3-4] we introduced a new algorithm – 
Space-Time ICA (ST-ICA) – which uses spatial as well as 
temporal/spectral information to solve the BSS problem. 
This is an augmentation of Single-Channel ICA (SC-ICA), 
which is a purely temporal ICA source model that is able to 
extract multiple underlying sources from a scalar time series 
where only single channel recordings are available or 
desirable [5]. 

In this paper we briefly revisit the framework whereby 
source analysis is undertaken through the use of spatio-
temporal information to inform the standard ICA algorithm. 
We particularly assess the effectiveness of both spatial and 
spectral information that is extracted from the recorded data 
as part of the ST-ICA procedure. Specifically we investigate 
ways of utilizing both spatial and spectral contextual cues as 
a means of identifying the subspaces pertaining to the 
underlying sources or processes. 

II. MATERIALS AND METHODS 

A. Ensemble (Spatial) ICA: E-ICA 
E-ICA (a.k.a. spatial ICA) represents the ‘standard’ ICA 
source model. In this model, the sensor measurements 

1( ) [ ( ),......, ( )]T
px t x t x t= are assumed to be made up of a 

linear instantaneous mixture of independent 
sources, 1( ) [ ( ),......, ( )]T

qs t s t s t= , such that x(t)=As(t) where 
A denotes the [pxq] mixing matrix, and (p≥q).  ICA aims to 
find an unmixing matrix W, (W = A-1), in order to demix the 
measurements such that y(t)=Wx(t), where the q-dimensional 
vector y(t) contains the ICs which are estimates of the 
underlying sources. The estimation of W is simplified by 
means of the whitening (decorrelation) procedure, which 
makes the covariance matrix of x(t) diagonal and its 
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Fig. 1: A 5 minute segment of multi-channel ictal EEG is depicted, a 
seizure with a sudden left fronto-temporal onset occurs at the point 
indicated by the marker (*). The recording is severely contaminated with 
ocular artifact throughout. 

 

components of unit variance. FastICA is one of many 
implementations of ICA found in the literature [6], which is 
often employed for its ease of implementation and speed of 
operation [7].  
 

B. Single-Channel ICA: (SC-ICA) 
For the implementation of SC-ICA, a multidimensional 
representation of the measured signal x(t) is achieved by 
constructing a delay matrix Q(t) from a set of m-dimensional 
delay vectors Xt, such that 
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where τ is a lag term, m is the number of lags a.k.a. the 
embedding dimension, and N is the length of the time series 
[5]. We set τ to 1 and m to 95 based on previous work on 
this data-set [3]. FastICA is applied to the delay matrix to 
learn A, W and a set of ICs in the source space, s, these 
being estimates of the underlying sources. The delay matrix 
of the estimated sources is then projected back onto the 
measurement space by means of a mixing-unmixing process, 
to form Q%  

, ,Q As s WQ Q AWQ= = =% .              (2) 
Since this is a purely temporal ICA source model, the 
columns of A and the corresponding rows of W contain the 
impulse response of m FIR filters, covering a number of 
generating filters and their shifted versions. Filters with the 
same magnitude frequency response ( )if ω  (but different 

phase responses) are grouped into C subsets γp spanning 
linearly independent subspaces Ep,  

           ( ) ( )
p

p i
i

f t f
γ

ω
∈

= ∑ , (where (:, ) ( ,:)i i if A W= ).         (3) 

Q is passed through these filters, ( ) .p pQ t f Q=% , to form the 

independent processes {P1…PC} spanned by {E1,…EC}. 
Therefore, each process Pi spanned by subspace Ei is 
manifested in the measurement space by a matrix of 
delays iQ% . Moreover, since this is a lossless procedure, 

summing { }1, , CQ Q% %K  returns the original time delay matrix 

Q. These delay matrices are then unembedded to form the 
one-dimensional, independent process time-series. Note that 
the mapping of a scalar time series into a multidimensional 
model implies that the processes can only be successfully 
indentified provided that they have disjoint spectral support. 
 

C. Space-Time ICA: (ST-ICA) 
This is an extension of the SC-ICA method, whereby the 
matrix of delays is constructed from n channels of interest 
such that the new overall delay matrix Qtot becomes  

( ) ( )1 ...
TT Ttot nQ Q Q =   

.                     (4)                    

Thus, for an n-channel system of N samples per channel, Qtot 
has dimension (nm x (N-m+1)).  Again, this matrix is 
decomposed into its constituent underlying independent 
processes through FastICA. In this case, the ICA algorithm 
learns matrices A and W, each column and row containing n 
superimposed filters, which have similar but not identical 
frequency responses due to possible subtle variations of the 
underlying sources in different spatial locations. In this way, 
there is an FIR filter for every selected scalp location, 
representing full spatial-temporal filtering. Some of the 
columns of A and corresponding rows of W  represent 
repeated FIR filters pertaining to the same independent 
process (and hence spanning the same subspace), which can 
be grouped together to form C sets of n generating filters – 
i.e. a mixing filter per measurement channel. The 
multichannel projections of the underlying independent 
processes {P1…PC} are then obtained by filtering and 
unembedding, as for the single-channel case. 
 

D. Clustering the spatio-temporal filters 
ST-ICA uses temporal information inherent in scalar time 
series (as in SC-ICA) but it also incorporates the spatial 
information inherent within the augmented delay matrix Qtot 
in the separation process. Therefore, we have a wealth of 
information about the spectral characteristics, the temporal 
dynamics and the spatial distribution of the extracted 
processes. This also implies that after the ICA process we 
are able to cluster the filter banks based on either similar 
frequency responses or on comparable spatial patterns (or 
indeed using both). To date, we cluster based only on the 
similarity of the magnitude frequency responses (the Power 
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Fig. 2: Following the application of STICA the columns of the mixing 
matrix represent FIR filters, the PSDs of the responses of these filters are 
represented here for each channel for selected components. (a) Group 1: the 
PSDs of all channels for components 11, 18 & 21 exhibit similar properties. 
The topography inset shows the spatial distribution of the total power in 
each channel PSD for each component. The sub-topographies show the 
distribution of power for 5 frequency bands from 0-2, 2-4, 4-6, 6-8, 8-10 
Hz. (b) Group 2: components 25 & 33 show PSDs with similar distributions 
(spectrally and spatially).  

 
 
Fig. 3: Plots of PSD for selected components wrt spatial location of each 
respective FIR filter are show here. (a) Group 1 – ictal process 1: 
components 11, 18 & 21 exhibit similar spectral/ spatial distributions. (b) 
Group 2 – ictal process 2: components 25 & 33 depict similar spectral/ 
spatial distributions. (c) Group 3 – ocular process: 1, 2, 6, 12, 19, 23 & 32 
exhibit varied distributions spatially but strongest at lower frequencies. 

Spectral Density – PSD), but both scenarios need to be 
investigated to ensure that we exploit all the information 
provided by this technique. This paper assesses, for the first 
time, the information content of both the PSDs of the filter 
banks as well as the spatial distribution of this information 
in order to select C subspaces that contain the underlying 
processes, PC.  
 

E. Epileptiform Data 
We analysed multi-channel ictal scalp EEG recordings of a 
number of patients who were undergoing continuous scalp 
EEG monitoring for possible epileptic surgery. We studied 
5-minute seizure segments, including a pre-ictal period of 3 
minutes. The data was recorded using nineteen electrodes 
placed on the scalp according to the International 10-20 
electrode placement system, using reference FCz. The data 
was sampled at 200 Hz at 12 bit resolution and digitally 
stored. Figure 1 depicts one such example of an ictal EEG 
segment with a rhythmic seizure component of a left fronto-
temporal origin occurring about 3 minutes into the segment. 
Note that the segment is severely contaminated with ocular 
artifact throughout. 

III. RESULTS 
The ST-ICA process described in the previous section was 
applied to the data after first subtracting the mean value of 
each recording, and then reducing the dimensionality of the 
data matrices through SVD to a dimension of 40 (obtained 

after observing the structure of the singular-spectrum and 
choosing a value which depicts the start of the noise floor). 

After the spatio-temporal matrix of delays Qtot is obtained 
and FastICA applied, the columns of the mixing matrix A 
are scrutinized with respect to the spatial and spectral 
information they contain. Figure 2 depicts the PSDs of the 
impulse response of each FIR filter (one per channel) for a 
set of chosen ICs. Note that FastICA learns these multiple 
FIR filters, where each column of (n =19) filters 
corresponds to one IC. Multiple FIR filter columns must 
now be grouped in order to identify the underlying 
processes. Figure 2(a) depicts Group 1, made up of 
components 11, 18 and 21 which all exhibit similar spectral 
properties (a prominent peak in the PSDs at 6~7 Hz). The 
topography shown in the inset depicts the spatial distribution 
of the total power in each channel PSD for each component. 
For Group 1 there is a predominantly tight left fronto-
temporal focus. The sub-topographies within each 
component show the distribution of power within the PSDs 
for 5 frequency bands from 0-2, 2-4, 4-6, 6-8, 8-10 Hz. 
These show that the different frequencies visible in the 
PSDs exhibit disparate spatial foci. Figure 2(b) depicts 

Group 2 made up of components 25 and 33 with similar 
PSDs yet different to those in Group 1. The spatial 
distribution of Group 2 is also more frontal than Group 1. 
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Fig. 4: Butterfly plots of three of the identified processes (projected to the 
measurement space) underlying the measured data. (a) Group 1 and (b) 
Group 2, depict ictal processes – note the onset times which are co-incident 
with the onset times in the raw recordings. (c) Group 3: ocular artifact, the 
amplitude and intensity of this artifact increases about 30 s into the seizure 
onset, this is evident in the raw recordings too. 

Figure 3 depicts plots of the PSDs for the same selected 
components as in Figure 2 (3(a) and 3(b)) and contrasts 
them with the components for an artifactual (ocular) process 
– Figure 3(c). The figures show the spectral response versus 
spatial location of each respective FIR filter, where a darker 
colour represents a stronger response. Note the similar 
overall spectral and spatial distributions for the ICs in each 
group. The artifactual group contains more ICs and the 
power is spread wider spatially yet concentrated in the lower 
frequency bands (typical of ocular artifacts). 

Figure 4 depicts butterfly plots of three of the identified 
processes underlying the measured data. These were formed 
by defining the process subspaces using the components as 
noted in Figure 3, and then projecting back each group of 
components to the measurement space and unembedding the 
resultant matrices. In each case Group 1, 2 and 3 represent 
just three processes underlying the (mixed) measured EEG 
signals. Groups 1 and 2, depict ictal processes – note the 
onset times which are co-incident with the onset times in the 
raw recordings, and Group 3 shows ocular artifact, the 
amplitude and intensity of this artifact increases about 30 s 
into the seizure onset, this is evident in the raw recordings 
too. 

IV. DISCUSSION AND CONCLUSIONS 
In this paper we revisit previous work [3-4] where we 
introduced the concept of ST-ICA applied to ictal EEG data 
and compared it with ensemble ICA and SC-ICA methods. 
In previous work we showed that in ST-ICA both spatial 
and temporal information is used to inform the standard ICA 
algorithm and that this results in the ability to separate 
sources that are both spatially and spectrally overlapping, 
something which is only possible through ST-ICA. In 
previous work, the independent underlying processes were 
selected based upon the similarity of the PSD of the FIR 
filters that ICA learns in the ST-ICA model. This means that 
although spatial and temporal information is used in the ICA 
procedure, the clustering phase could be neglecting useful 
information and result in processes which are ill-defined. 
Here, we analyze both the spatial as well as the spectral 
content of the FIR filters – the PSDs and their spatial extent 
are observed and the underlying processes are defined based 
on the similarity of both quantities. Although preliminary at 
this stage, the results show that, for the most part, the PSDs 
of each FIR filter for a given IC are similar (although not 
identical). Moreover, for a given IC, some PSDs at specific 
spatial locations differ and indicate the potential of some 
remnant mixing remaining even after the ST-ICA 
decomposition (c.f. low-frequency components at frontal 
channel locations indicative of ocular artifacts.) This is 
possibly due to the close spatial proximity of the ictal source 
to the ocular artifactual source resulting in some remnant 

mixing. Future work will consider an automated clustering 
method that uses the spatial/spectral matrices shown in 
Figure 3 to identify the underlying processes. 
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