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Abstract— The electrical conductivity of human tissue 
could be used as an additional diagnostic parameter or might 
be helpful for the prediction of the local SAR during MR mea-
surements. In this study, the approach “Electric Properties 
Tomography” (EPT) is applied, which derives the patient’s 
electric conductivity using a standard MR system. To this goal, 
the spatial transmit sensitivity distribution of the applied RF 
coil is measured. This sensitivity distribution represents the 
positive circularly polarized component of the magnetic field. 
It can be post-processed utilizing Faraday’s and Ampere’s law, 
yielding an estimation of the spatial distribution of the pa-
tient’s electric conductivity. Thus, EPT does not apply exter-
nally mounted electrodes, currents, or RF probes. In this study, 
phantom experiments underline the principle feasibility of 
EPT. Furthermore, initial conductivity measurements in the 
brain allow distinguishing cerebro-spinal fluid from the sur-
rounding grey and white matter. 

I. INTRODUCTION 

HE electric properties of the human body, i.e., the elec-
tric conductivity σ and permittivity ε, characterize vari-

ous kinds of healthy (see, e.g., [1,2]) as well as pathologic 
tissue. The most prominent example in this framework 
might be the pathological alteration of σ and ε in tumours 
[3-7]. Besides diagnosis, σ is a key factor for the Specific 
energy Absorption Rate (SAR), which is a major problem in 
today’s high-field MR. 

A well-known method of measuring electric properties in 
vivo is Electric Impedance Tomography (EIT) (see, e.g., [8-
13]). EIT is based on low-frequency currents, which are 
applied to the human body via external electrodes [11] or 
induced by suitable RF coils [12]. A different method is 
given by measuring the applied currents via MR phase im-
aging yielding “current density imaging” [14,15] or “MR-
EIT” [16,17]. 

The approach of the current paper, called Electric Proper-
ties Tomography (EPT) [18,19], differs from the presented 
approaches substantially. It is based on standard B1-
mapping, i.e. measuring the active magnetic component of 
the applied RF field (see, e.g., [20-23]). Hence, no electrode 
mounting is required, and the energy deposited in the human 
body is the same as for standard MR imaging. No inverse 
problem has to be solved, and the spatial resolution is given 
by the resolution of the MR image and the quality of the 
applied B1-mapping technique. In opposite to an earlier 

version of EPT [18,19], the explicit calculation of the elec-
tric field is not required due to the introduction of certain 
model assumptions. Instead, an estimation of the electric 
field is obtained as an additional output of EPT. 

The electric conductivity depends on the frequency of the 
applied RF field. With EPT, the conductivity is determined 
at the Larmor frequency corresponding to the main field of 
the MR system used, which in this study is 64 MHz. 

The paper first derives the central equation of EPT. Then, 
the steps necessary to solve this equation are discussed. 
Corresponding phantom experiments are performed investi-
gating different conductivities reflecting the range of human 
tissue conductivities. Finally, initial in vivo results are 
shown. 

II. THEORY 

A. Derivation of central EPT equation 
Faraday’s law in integral form is given by 
 

∫∫ ∂
⋅=⋅−

AA
i lrEarH d)(d)(ωμ           (1) 

 
with ω  the Larmor frequency, μ the (assumed to be con-
stant) permeability, A the integration area, and ∂A the curve 
around the integration area. The magnetic field strength H 
and the electric field E are assumed to be time-harmonic 
H,E ~ exp(iω t). On the other hand, Ampere's law in differ-
ential form for time-harmonic fields can be written as  
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Here, κ = ε − iσ/ω  denotes the (assumed to be isotropic) 
complex permittivity, ε the real permittivity, and σ the elec-
tric conductivity. To estimate κ, (2) is integrated around ∂A 
and divided by (1) 
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This estimation is valid in regions, where the spatial varia-
tion of κ along ∂A is significantly smaller than the variation 
of E 
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which is fulfilled, e.g., inside compartments with constant κ. 
Equation (3) provides an estimation of κ, which requires 
only the knowledge of the three spatial components of the 
magnetic field. Due to assumption (4), the knowledge of the 
electric field is not required explicitly in contrast to earlier 
versions of EPT [18,19]. However, regarding the magnetic 
RF field, only the components perpendicular to the main 
field Bo influence MR images. Thus, in principle, only the 
perpendicular components seem to be detectable with MR, 
but not the component parallel to Bo (usually called z-
direction). This feature makes it advantageous to choose a 
non-transverse integration area A to avoid the division by Hz 
in (3). For instance, (3) reads for a coronal area A=Axz 
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A coronal integration area suggests the imaging of coronal 
slices to facilitate numerics, however, it can also be imple-
mented for non-coronal imaging slices. 
Please note that (5) provides absolute values of κ even in the 
case that only relative values of the magnetic field are 
measured. 
 

B. Determination of the main magnetic field component 

For EPT, Eq. (5) is applied to a transmit/receive RF coil 
of a standard MR system. Thus, the quantities Hx, Hy, and Hz 
of the involved RF coil have to be determined. 

During RF transmission in MRI, only the positive circu-
larly polarized magnetic field component H+ = (Hx+iHy)/2 
is active. It can be measured with so-called B1 mapping 
techniques (see, e.g., [20-23]). For a standard quadrature 
coil for RF transmission, H+ is the dominant component, 
i.e., H- = (Hx - iHy)/2 << H+ and Hz << H+ . Thus, this study 
assumes H- ≡ Hz ≡ 0, and Eq. (5) can be re-written 
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which turns out to be the central equation of this study. 
Please note that the discussed assumption H- ≡ Hz ≡ 0 is 
optimally fulfilled for quadrature body or head coils. The 
use of other RF coils typically violates this assumption, 
yielding suboptimal reconstruction results, and thus, is not 
recommended for EPT. 

 
Fig. 1 Set up of the phantom experiments. Blue: RF body coil, orange: bi-

cylindrical phantom, green: coronal imaging slice. 

III. METHODS 

EPT was applied to an iso-centric, bi-cylindrical phantom 
(diameters = 7.5cm, height = 13cm, cylinder axis distance = 
12.5 cm) with different electric conductivities in a quadra-
ture body coil at 64 MHz (see Fig. 1). The phantom was 
filled with different saline solutions between 0.05 S/m to 5.0 
S/m, covering the physiological range [1,2]. The conductivi-
ties were checked prior to the MRI experiment using a 4-
ring potentiometric probe (HI8733, Hanna Instruments, 
USA). To enhance the MR signal, 2 ml Magnevist (Bayer 
Schering Pharma AG, Berlin, Germany) was added per liter 
saline solution. Experiments were performed on a Philips 
Achieva 1.5T system (Philips Medical Systems, Best, The 
Netherlands). B1 maps were acquired using “Actual Flip 
angle Imaging” (AFI) [22,23]. A 3D sequence with TR1 = 
32 ms, TR2 = 160 ms, TE = 2.5 ms, a spatial resolu-
tion=1.15×1.15×8 mm, coronal slice orientation, and a 
nominal flip angle of α = 60° was used. The same sequence 
was used to image the head of a volunteer. To reconstruct σ 
via Eq. (6), a coronal integration area was chosen. The re-
quired differentiations were performed via Savitzky-Golay 
filtering [24]. 

IV. RESULTS / DISCUSSION 

First, the phantom was investigated with saline concen-
trations yielding conductivities of 0.47 S/m and 2.14 S/m. 
Fig. 2 shows the obtained experimental reconstruction re-
sults yielding mean conductivities in the two cylinders of 
0.45±0.038 S/m and 1.92±0.059 S/m. 

Second, the experiment was repeated using 10 different 
conductivities between 0.05 S/m and 5.0 S/m in one of the 
cylinders, reflecting the physiological range of conductivi-
ties [1,2]. A high correlation of 99.6% was found between 
conductivities measured a priori and with EPT (see Fig. 3). 

Finally, EPT was applied to the head of the volunteer 
(Fig. 4). Here, a significant contrast between the cerebro-
spinal fluid (CSF) in the lateral ventricles and the surround-
ing white matter is visible. Accordingly, the sub-cranial CSF 
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