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Abstract— Studies show that the proportion of elderly will
reach 30% of the total population by 2050 in developed
countries, such as France. The elderly live generally alone, thus
many health problems related to age are under reported. Falling
is one of these problems and several devices have been developed
recently, based on accelerometers, in order to detect it and
alert carers. In order to improve the detection success of these
devices, we propose quantifying autonomic nervous system
activity (ANS) using a wearable ambulatory device developed
for this purpose. We studied the A.N.S’s response on 7 adult
subjects during simulated falls and standing-lying transitions.
We implemented a classification method using the Support
Vector Machine in order to classify these two situations using
measured heart rate variability and electrodermal response.
Good results (sensibility =70.37%, specificity =80%, positive
predictor=73.8%) were obtained using a Polynomial kernel
(p = 5) for the support vector machine implementation.

Index Terms— Autonomic nervous system(ANS), Wearable
device, Fall detection, Support Vector Machine.

I. INTRODUCTION

THE proportion of the elderly in the population is
increasing in developed countries. Many of the elderly

choose to stay home rather than go to a retirement home.
As they tend to live alone, many health problems related
to aging (such as Myocardial infarction, Parkinson’or
Alzheimer’s disease) are not detected, early enough, thus
increasing the mortality rate and adversely affecting the
quality of life.

Wearable devices have been developed in response to
this growing problem in order to monitor the elderly in
their homes. Several devices, such as the AMON system
[1], enable the measurement of a range of physiological
parameters such as the SpO2 (oxygen saturation), ECG,
blood pressure, skin temperature and/or activity. The purpose
of these devices is to monitor the health or the wellness
of the subjects, measuring the physiological parameters in
order to detect a health problem at an early/latent stage
and to send an alarm to alert the remote clinical or related
center. One of the major health risks associated with the
elderly is falling as it results in many disabling fractures
[2] and has major physiological consequences. However,
if it is detected in time, much pain and trauma can be
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averted and the risk of mortality reduced. Fall is defined
as a rapid change from the upright/sitting position to the
reclining or almost lengthened position [3]. In order to
detect this problem, several ambulatory devices have been
developed incorporating accelerometers [4]. The sensor [4],
developed by the AFIRM team, one of the laboratories
contributing to the present research, detects falls using two
tri-axial accelerometers placed within a patch attached to
the left side of the chest. The latest version of this sensor
can detect a fall with a percentage success close to 85%. In
order to improve the detection rate of this fall sensor, the
authors are studying the ANS activity during simulated falls
and standing-lying transitions. Our research seeks to find
a classification method that reliably differentiates between
these two situations using various physiological signals.
We have therefore developed a wearable device for the
monitoring of, among of others things, ANS activity.
The ANS is activated unconsciously through the sympathetic
(SNS) and parasympathetic (PSNS) nervous systems in
order to maintain homeostasis in the body. The sympathetic
system is activated in cases of danger, surprise or stress.
The efferent path way in the SNS reacts in order to prepare
the body for action, activating the necessary mechanisms
such as heart rate acceleration, blood vessels constriction,
pupil dilation, perspiration (sweating), etc. On the other
hand, the afferent path way carries the sensations as pain
or heat to the brain. In contrast, the PSNS is activated in
order to enable rest, repose and stock of the energy. The
parasympathetic system slows the heart rate, dilates the
blood vessels and constricts the bronchi when the need of
oxygen decreases.
Several studies have proved the pertinence of measuring the
activity of the ANS in order to detect basic emotions [5].
Healey et al [6] evaluated stress levels in car drivers during
different kind of driving conditions (rest, highway and city).
The recorded physiological signals were electrocardiogram,
electromyogram, skin conductance and respiration. Using
these signals, the driving stress was classified with a success
rate of 97%, the most relevent signals were the heart rate
and the skin conductance. Jovanov et al [7] developed a
wireless system that monitors stress during the training
aircraft pilots and during their routine activities, measuring
skin conductivity, instantaneous heart rate and the subject’s
activity. In our case, we measured the ANS activity using
three physiological signals: skin temperature, skin resistance
and electrocardiogram, using a wearable device (Fig 1)
developped for this purpose.
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II. MATERIALS AND METHODS

A. Wearable device

1) Skin temperature sensor: skin temperature was mea-
sured using a thermistor (Betatherm, Réf. 10 K3 MCD2)
attached to palm of non dominant hand. The resultant
resistance variation produced by the sensor was measured
with a Wheatstone bridge in order to produce a voltage
corresponding to the resistance. This configuration gave
good measurement linearity and accuracy. The temperatures
ranged between 22 and 42 degree Celsius. The signal was
amplified and filtered with a RC circuit (fc=1KHz).

2) Skin resistance sensor: this signal was measured with
a current constant method. The system applied a DC current
of 3.3 µA in order to record a voltage proportional to the skin
resistance. The value of the current was fixed in order to have
a resistance variation beween 0 to 1MΩ. The electrodes used
were Ag/AgCl with a diameter of 0.8 mm. The electrodes
were placed on the second phalanx of the index and the third
digit of the non-dominant hand in compliance with published
recommendations [8]. In order to improve the contact surface
an isotonic paste was applied. The signal was further buffered
and filtered with a RC filter.

3) Electrocardiogram: The electrocardiogram was mea-
sured using a classical electrocardiogram circuit and a stan-
dard lead II configuration. A Driven Right Leg circuit was
implemented in order to increase the SNR, and the ECG
signal was finally filtered using a band pass filter between 8
to 16 Hz.

The above three signals were sampled using a Sigma-
Delta converter (MAX1400) with a 18-bit resolution and five
analogic inputs. The sampling frequency is set to 600 Hz for
each input in order to fix the sampling frequency of 200 Hz
for the three channels. The signals sampled are send to the
microcontroller (PIC18F2580) with a SPI communication.
The data frame was sent using a Zigbee device with a baud
rate of 57600bps.

Fig. 1. Wearable ambulatory device developed for the quantification of
the ANS; measuring skin temperature, skin resistance and the electrocar-
diogram.

B. Signal processing

In order to implement the signal processing the algorithms
have been developed offline.

1) Skin resistance: The skin resistance signal is mainly
associated with the activity of the sweat gland. This activity
gives an information about the arousal state of the person.
The signal could be analyzed in the following ways [9]:
• Skin resistance level: this is the low variation of the

signal.
• Skin resistance response: shows the response produced

by a particular stimulus like the fall or another event.
• Non oriented response: the non oriented responses are

the responses produced spontaneously without a stimu-
lus.

2) Electrocardiogram: The ECG signal was filtered using
a bandpass Butterworth filter with a bandpass frequency from
8 to 16Hz. This numeric filter was implemented in order to
set the frequency ranges of the ECG signal for the QRS
complex detection. The QRS complex was detected with
the Pan-Tompkins’ algorithm [10] and the RR times signal
extracted detecting the maximal point of the QRS complex
in order to built the RR tachogram.

3) Heart Rate Variability: Heart rate variability (HRV)
is a complementary non-invasive method commonly used to
estimate the ANS activity. Several techniques are currently
used in the literature to calculate HRV [11]:
• Frequency domain methods, using either the Fast

Fourier Transform (Periodogram or time frequency al-
gorithm) or methods based on the autoregressive model.

• Non linear methods such as the Poincaré Plot.
a) Frequency Domain: The spectral analysis of the

heart rate signal is performed on the energies of two different
bands of frequencies in order to separately quantify the
sympathetic and parasympathetic system activities:
• The measured energy in low frequency band (0.04-0.1

Hz) reflects the activation of both the parasympathetic
and sympathetic systems.

• The energy in high frequency band (0.15 - 0.4 Hz),
on the other hand, corresponds to the activation of the
parasympathetic system alone.

In the present work, the Fourier Transform was used to
compute the power spectral density of the heart rate signal
that had been reconstructed by a spline cubic interpolation
at 10 Hz, and from which the DC component had been
removed to facilitate the study of the signal dynamic. The
Power spectral density was computed using the short time
frequency (STFT) algorithm (1). In this case, f(t) represents
the tachogram signal and g(t) the shifting window imple-
mented using a Gaussian window and a standard deviation
defined by equation (2) where N is the sample length of
the signal f(t) and w the standard deviation of the Gaussian
window.

Sf(u, ξ) = 〈f, g〉 =
∫ +∞

−∞
f(t)g(t− u)e−iξt (1)

w =

√
N

4π
(2)
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b) Poincaré Plot: The Poincaré Plot is a nonlinear
method which enables the calculation of the short term
variability. It is a representation of the RRn vs. the RRn+1
interval and has the form of an ellipse from which one can
measure the standard deviation along its principal axis (SD2)
and the orthogonal standard deviation (SD1). The SD1/SD2
ratio is further computed as per the standard methods [12].

C. Support vector Machine

The support vector machine (SVM) is a supervised classi-
fication technique developed by Boser and Vapnik [13]. This
technique finds the best separating hyperplane between two
classes using the samples placed on the edge of each class
(Fig 2) in order to maximize the distance that exists between
the hyperplan and the nearest points of each classes that
is defined as the margin. Let’s consider the couple (xi, yi)
where xi ∈ Rn and yi is a constant that shows the class
to which the xi element belongs. The algorithm consists in
determining (w,b) that verify:

{
w.xi + b ≥ 1⇒ yi = 1
w.xi + b ≤ −1⇒ yi = −1 (3)

The distance between these two planes is defined as
γ = 2/ ‖w‖2 thus maximizing this distance is equivalent
to minimizing (4).

min
w,b

{
1
2
‖w‖2

}
(4)

In 1995, Cortes et Vapnik [14], introduced a new parame-
ter that considers the wrong classification. This technique
introduced the slack variables ξi in order to loose the
conditions imposed by the equation 3. Finally, the relation 4
can be modified by :

min
w,b,ξ

{
1
2
‖w‖2 + C

∑
i

ξi

}
(5)

subject to the following conditions yi(w.xi + b) ≥ 1− ξi.

In the cases where the data are not linearly separable it is
possible to modify (3) by the following equation:

f(x) = w.K(x) + b (6)

Fig. 2. The margin is maximized ,in order to find the hyperplane, using
only the vectors located on the edge of each class.

where the function K(x) is called the kernel function.
In our case we used a Gaussian kernel and the Polynomial
kernel defined by the equations (7) and (8)

K(xi, xj) = exp
‖xi − xj‖2

2σ
(7)

K(xi, xj) = (xTi .xj + 1)p (8)

The Gaussian kernel is modified by the parameter σ. This
parameter fixes the standard deviation of the Gaussian curve
used. In the case of the Polynomial kernel, the parameter p
controls the degree of the polynomial used to implement the
non-linear transformation.

III. EXPERIMENTATION PROTOCOL

The experimentation was carried on 7 adult subjects (28
±7 years). The physiological signals described previously
were displayed and recorded during the study. The experi-
mentation has been divided in two parts:
• In the first part, each subject stood in standing position

with his eyes closed, during one minute. After one
minute, the subject was pushed in order to simulate a
fall. The subject remained in the lying position during
one minute. The subject’s fall was cushioned by a thick
mattress, ensuring their safety. For each subject the fall
was simulated 6 times.

• In the second part, the subject did a normally standing-
lying transition. The event was repeated three times.

A. Feature extraction

For each situation, we extracted a set of features from
each signal. For the skin resistance signal we considered
30 seconds before and after each event. We centered the
totality of the signal (by subtracting the mean and dividing
by the standard deviation) and measured the number of
electrodermal responses (EDR’s) and the sum of the area
related to these responses. In the case of the heart rate
variability, we computed the energies in the low and high
frequencies bands in order to compute the LF/HF ratio, the
LF/(LF+HF) ratio with the STFT and the SD1/SD2 ratio with
the Poincaré plot representation 45 seconds before the event.
In order to avoid the non stationary problems produced by
the change of the position, we evaluated the same features
starting with 10 seconds until 55 seconds after the event.

IV. RESULTS

We implemented the SVM in order to classify the two
situations (falling down and standing-lying transitions) us-
ing the physiological features described above. The SVM
was implemented using two types of kernel (Gaussian and
Polynomial). For each set of parameters (σ and C for the
Gaussian kernel and p and C for the Polynomial kernel),
we evaluated the performance of the classifier training on
the S1,2...n−1 elements and testing on the Sn(leave one out
method) following equations(9,10,11).
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Sensibility(%) =
TP

TP + FN
× 100 (9)

Specificity(%) =
TN

TN + FP
× 100 (10)

Positive predictivity(%) =
TP

TP + FP
× 100 (11)

TABLE I
SVM USING A GAUSSIAN KERNEL

C=1
σ sensitivity specificity Positive prediction
0.1 92.59 33.33 71.42
0.2 74.07 40 61.9
0.5 64.28 13.33 64.28

C=10
0.1 88.88 33.33 69.04
0.2 74.07 60 69.04
0.5 74.07 53.33 66.66

C=100
0.1 88.88 33.33 69.04
0.2 77.77 60 71.42
0.5 66.66 60 64.28

TABLE II
SVM USING A POLYNOMIAL KERNEL

C=1
p sensitivity specificity Positive prediction
2 96.29 0 61.90
3 77.77 33.33 61.90
5 74.07 60 69.04

C=10
2 74.07 46.66 64.28
3 85.18 53.33 73.80
5 70.37 80 73.80

C=100
2 74.07 53.33 66.66
3 70.37 73.33 71.42
5 70.37 73.33 71.42

In the case of the polynomial kernel we observed better
results compared with the Gaussian kernel. With p = 5 and
C=10 we reached a sensitivity equal to 70.3%, a specificity
of 80% and the positive predictor was equal to 73%. The
non-linear transformation, used to map the data, increases
the percentage of good classification in this case. The C
parameter allows to soften the constraints improving the
results of the clasifier, nevertheless, a high value of C would
improve the results but the classifier will be not general
falling in the overfitting of the data.

V. CONCLUSION

In the present paper, we presented an approach in order to
improve the ratio of the fall detection measuring the activity
of the ANS. Therefore, we developed a wearable ambulatory
device that measures different physiological signals such as
the skin temperature, the skin resistance and the electro-
cardiogram. We implemented a classification method using

the support vector machine in order to differentiate the fall
reaction’s compared with a normal standing-lying transition.
We used two type of kernel (Gaussian and Polynomial).
The results show that using the Polynomial kernel with a
p = 5 and a C = 10 we obtained an acceptable positive
prediction with equivalent sensibility and specificity. This
approach is limited to people whose ANS is not adversely
affected by disease, etc. Indeed, with elderly who are treated
with beta-blockers, the ANS is impaired and our method is
not applicable. As a future work, we hope to make different
kind of experimentations in order to study the ANS activity
during the daily living activities in the elderly in order to
prevent the fall and detect the stress level.
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