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Abstract— Dynamic modelling using the traditional least
squares method with noisy input/output data can yield biased
and sometimes unstable model predictions. This is largely
because the cost function employed by the traditional least
squares method is based on the one-step-ahead prediction
errors. In this paper, the model-predicted-output errors are
used in estimating the model parameters. As the cost function
is highly nonlinear in terms of the model parameters, the
particle swarm optimisation method is used to search for the
optimal parameters. We will show that compared with model
predictions using the traditional least squares method, the
model-predicted-output approach is more robust at dealing with
noisy input/output data. The algorithm is applied to identify the
dynamic relationship between changes in cerebral blood flow
and volume due to evoked changes in neural activity and is
shown to produce better predictions than that using the least
squares method.

I. INTRODUCTION

The objective of system identification is to find a suitable

model to approximate the input/output relationship from

a set of observed data. Linear regression models, as a

subset of linear-in-parameters models, are an important class

of representations for system identification and have been

widely used. One important feature of linear regression

models is that they are easy to apply, simple to analyze

mathematically and to interpret physically. At the centre

of the linear regression models is the least squares algo-

rithm. The unknown parameters in the regression model

are usually estimated by minimising the sum of squares

of errors between the observed and the model predicted

responses. The least squares algorithm uses the one-step-

ahead (OSA) predictions as the model predicted response,

and hence the cost function is a quadratic function of the

unknown parameter vector and the optimisation can be done

with ease.

Unlike the OSA prediction, the model predicted output

(MPO) which is generated by the past model predicted

output and input data is a more conservative measure of

model prediction. It is usually applied in the final stage

of the system identification process as an important tool

of assessing the performance of the obtained model [3].

Because the cost function based on the MPO errors is highly

nonlinear with respect to the unknown model parameters, the

MPO method is rarely used for parameter estimation in linear

regression models.
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In the present study, a new parameter estimation method

is proposed by minimising a nonlinear cost function based

on MPO errors. Model parameters are directly optimised

using the particle swarm optimisation [4] method which

searches the global optimal parameter estimates over com-

plex parameter spaces for the associated nonlinear cost func-

tion. Particle swarm optimisation is a stochastic, population-

based algorithm for solving nonlinear optimisation problems.

Compared with other evolutionary computation techniques,

particle swarm optimisation has several attractive properties.

It has memory, so knowledge of good solutions are retained

by all particles. It also has constructive cooperation between

particles.

The proposed parameter estimation method is applied to

estimate the dynamical relationship between the changes of

cerebral blood flow (CBF) and cerebral blood volume (CBV)

due to evoked changes in neural activity. The results show

that the proposed parameter estimation method based on

MPO errors is superior to the least squares estimation based

on the OSA errors.

II. MATERIALS AND METHODS

A. Experimental Data

The data presented here are reworked from [6] [10].

The experimental procedures for concurrent measurement of

cerebral blood flow (CBF) and volume (CBV) are described

in greater detail in [6]. They are briefly reviewed here.

Urethane anesthetised Hooded Lister rats were used (300-

400g). Electrical stimulation of the whisker pad was deliv-

ered with intensity 1.2 mA and an individual pulse width

of 0.3 ms. The duration of the stimulation is 2s with the

stimulus onset at 8s after the start of each trial, with stimulus

frequencies 1, 2, 3, 4 and 5Hz. Changes in CBF were

measured using laser-Doppler flowmetry, with a sampling

rate of 30Hz, while changes in CBV were measured using

optical imaging spectroscopy (OIS) with a sampling rate of

7.5Hz. To establish the dynamic coupling between CBF and

CBV, we down-sampled CBF to 7.5Hz and used the time

series of normalised changes in CBF and CBV defined as

∆ f =
CBF −CBF0

CBF0
,∆v =

CBV −CBV0

CBV0

where the subscript 0 denotes baseline values. Data were

averaged over 5 animals. Fig.1(a) shows the time series of

normalised changes in CBF and the accompanying changes

in CBV at stimulus frequency of 3Hz. The black bar denotes

the onset period of the electrical stimulus. Fig.1(b) shows the

same two time series but both normalised to have a maximum
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of unity. This figure demonstrates the well-known feature that

the CBF time series returns to baseline much quicker than

that of CBV [2] [9].
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Fig. 1. Time series of CBF and CBV at stimulus frequency of 3Hz. (a)
Normalised changes ∆ f and ∆v ; (b) changes in CBF and CBV normalised
to have maximum of unity.

B. Identification Methods

Consider the following linear-in-parameter discrete model

for a SISO (Single Input Single Output) dynamical system,

y(t) =
m

∑
i=1

θi fi(u(t −1), ...,y(t −1), ...)+ ε(t), (1)

where u(t), y(t) are input and output variables respectively,

ε(t) is the additive noise on the output measurements. The

model terms fi(.), i = 1, ...,m in (1) can be linear or nonlinear

combinations of the input/output variables.

Given an identified model in the form of (1), the corre-

sponding OSA output prediction and errors are defined as

below,

y(osa)(t) = ∑
m
i=1 θ̂i f̂i(u(t −1), ...,y(t −1), ...)

e(osa)(t) = y(t)− y(osa)(t)
(2)

where θ̂i, f̂i(.), i = 1, ...,m denote the estimated parameters

and model terms respectively.

Similarly, the corresponding MPO and associated predic-

tion errors in (3) are defined in the following equation.

y(mpo)(t) = ∑
m
i=1 θ̂i f̂i(u(t −1), . . . ,y(mpo)(t −1), . . .)

e
(mpo)
t (t) = y(t)− y(mpo)(t)

(3)

Comparing these two definitions given in (2) and (3), it can

seen that y(mpo)(t), which is simulated by the past model

predicted output y(mpo)(t − 1), ... and input data is more

realistic in assessing the performance of the model prediction

capabilities. The OSA predicted output defined in (2), which

uses the past output measurements y(t−1), ... instead, shows

single step prediction capability only.

It is well known that the least-squares estimate of the

model parameter θi is derived by minimizing the following

cost function.

θ̂
(OSA)
i = argmin

θ
∑

t

(

e(osa)(t)
)2

= argmin
θ

∑
t

(

y−
m

∑
i=1

θi fi(u(t −1), ...,y(t −1), ...)

)2

(4)

In (4), the OSA prediction error e(osa)(t), which is also

referred to as the regression error, has a linear relationship

with the parameter θ .

It can also be seen from (3) that the MPO error e(mpo)(t)
is a nonlinear function of the parameter θ . This is illustrated

in the following example.

Consider a simple discrete linear system with two param-

eters a and b.

y(t) = ay(t −1)+bu(t)+ ε(t), t = 1,2, . . . , (5)

When the system is driven by an impulse function δ (t) as the

input, the model predicted output and the corresponding error

with the estimated â and b̂ can be obtained in the following

compact form.

y(mpo)(t) =
b̂

1− ât
(6)

e(mpo)(t) = y(t)−
b̂

1− ât
(7)

In (7), unlike the OSA error, the MPO error is a nonlinear

function of the parameter â although the regression model

(5) is linear in parameters. As a key criterion of assessing

the identified model, the following equation based on the

MPO error is much preferred to produce accurate parameter

estimates than using the cost function defined in (4).

θ̂ (MPO) = argmin
θ

∑
t

(

e(mpo)(t)
)2

(8)

Due to the nonlinear relationship in (7), the estimation of

parameter θi using the nonlinear cost function (8) becomes

a nonlinear optimisation problem. To solve this problem, a

nonlinear optimisation method called particle swarm optimi-

sation [4] was used to search for the global optimal values

of the associated model parameters.

To illustrate the noise impact on the least squares based

parameter estimates, the following simple linear system was

simulated.

y(t) = ay(t −1)+by(t −2)+ cu(t −1)+du(t −2)+ εy(t)

u(t) = 0.5exp(−0.1t) sin(10t +1)+ εu(t)
(9)

In (9), εy(t) and εu(t) are Gaussian white noise sequences

with zero mean and variances σεy = 0.007, σεu = 0.07

respectively. The linear discrete model represented by (9) is

simulated with model parameters chosen to be a = 0.6,b =
0.2,c = 0.5 and d = −0.3. Three different noise condi-

tions associated with the input and output variables have

been simulated. Comparisons of the parameter estimation

results produced by least squares and nonlinear optimisation

methods are given in Table I. It can be seen from this

simple example that the parameter estimates obtained by

the least squares method when the input data is corrupted

by noise are not affected. However, the parameter estimates

given by the least square method are seriously affected

by the noise imposed on the output data. This shows that

the identification of the linear regression model using the

least squares method can be sensitive to the imposed noise

although it is purely random white noise. Compared with
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the least squares estimates given by (4), model parameters

estimated by nonlinear optimisation based on the error cost

function (8) are significantly better and very close to the true

values. This shows that the cost function defined on (8) is

much more robust against noise imposed on the input/output

data and directly reflects the prediction performance of the

identified model.

III. RESULTS

The dynamic relationship between the normalised CBF

and CBV is well known to be nonlinear [2][9] [7][16].

However a simple linear dynamic model was shown to be

adequate at describing the relationship between the nor-

malised changes in CBF (∆ f ) and that in CBV (∆v) [13].

Hence the starting point of our haemodynamic model is

based on a linear discrete model with the model input as

u(t) = ∆ f (t) and the model output as y(t) = ∆v(t). It is

worthwhile noting that both the input and the output are

physiological measurements and are subject to physiological

as well as measurement noise. After model term selection

using orthogonal forward regression [8] [12], the following

simple linear model was chosen:

y(t) = a1y(t −1)+a2y(t −2)+b1u(t −1)+b2u(t −2) (10)

The model parameters a1, a2, b1 and b2 were estimated

using the OSA methodology (4) and the MPO methodology

(8) and the model predicted outputs from both models are

superimposed in Fig. 2. It can be seen that the model

predicted output based on the MPO nonlinear optimisation

method perform significantly better than those based on

the least squares estimation using the OSA methodology.

Particularly, as shown in Fig. 3(e), the model predicted

output generated by the least squares estimation has become

unstable.

The estimated model parameters in (10) using the two

algorithms are compared in Table II. It can be seen that pa-

rameter estimates are different using the different algorithms,

but the model prediction is better for the new algorithm

which produced an excellent approximation for the observed

CBV dynamics.

IV. DISCUSSIONS AND CONCLUSIONS

It has been observed and that the cost function used in

the standard least squares method can not fully reflect the

key requirements when the data contains noise on both the

input and output. In the identification of linear regression

models using the least squares method, as shown in the

simulated example, the noise in the output can also make

the parameter estimates seriously biased. However, this kind

of identification problems can be handled by the nonlin-

ear optimisation method, although computational costs are

also increased. This proposed modelling approach has been

successfully applied to obtain a linear dynamical model

for the coupling between changes in CBF and changes in

CBV. To fit a linear model to describe the dynamics of

CBF changes and accompanying CBV changes without a

priori information, the orthogonal forward regression model
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Fig. 2. The model predicted ∆ v of the identified linear dynamical model
based on least squares estimation in response to the CBF changes with
electrical stimuli delivered at: (a) 1Hz, (b) 2Hz, (c) 3Hz, (d) 4Hz, (e) 5Hz

selection method was initially applied to determine the linear

model structure. In the following identification process, the

associated model parameters were optimised based on the

nonlinear cost function. Comparisons of model predicted

output using the linear-in-parameter cost function and the

nonlinear-in-parameter cost function showed the superior

performance offered by the latter
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