
 
 

 

  

Abstract—Based on statistical thermodynamics or Michaelis 
-Menten kinetics, molecular biological systems can be modeled 
by a system of nonlinear differential equations. The nonlinearity 
in the model stems from rational reaction rates whose 
numerator and denominator are linear in parameters. It is a 
nonlinear problem to estimate the parameters in such rational 
models of molecular biological systems. In principle, any 
nonlinear optimization methods such as Newton-Gauss method 
and its variants can be used to estimate parameters in the 
rational models. However, these methods may converge to a 
local minimum and be sensitive to the initial values.  In this 
study, we propose a new method to estimate the parameters in 
the rational models of molecular biological systems. In the 
proposed method, the cost function in all parameters is first 
reduced to a cost function only in the parameters in the 
denominator by a separable theorem. Then the parameters in 
the denominator are estimated by minimizing this cost function 
using our proposed new iteration method. Finally, the 
parameters in the numerator are estimated by a well defined 
linear least squares formula.  A simple gene regulatory system is 
used as an example to illustrate the performance of the proposed 
method. Simulation results show that the proposed method 
performs better than the general nonlinear optimization 
methods in terms of the running time, robustness (insensitivity) 
to the initial values, and the accuracy of estimates. 
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I. INTRODUCTION 
As modern molecular biology moves towards the 

mechanism of biological systems, the modeling and 
simulation become very important tools. The dynamics of 
molecular biological systems are commonly modeled in 
terms of systems of ordinary differential equations that 
involve parameters corresponding to kinetic constants. Most, 
if not all, models for molecular biological systems are 
nonlinear in both parameters and system state variables. 
Estimation of parameters in these models is a nonlinear 
estimation problem. In particular, if they are derived on basis 
of statistical thermodynamics [1, 2] or Michaelis-Menten 
kinetics [2-4], nonlinear functions in the resultant models are 
rational functions whose numerator and denominator are 
linear in parameters. Parameters in such rational molecular 
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biological systems are typically reaction constants of interest. 
Estimation of these parameters is crucial to construct the 
whole molecular biological systems [5].  In general, all 
nonlinear optimization programs can be used to estimate 
parameters in the rational models of biological systems, for 
example, Gauss-Newton iteration method and its variants 
such as Box-Kanemasu interpolation method, Levenberg 
damped least squares methods, and Marquardt’s method [6]. 
However, these iteration methods are sensitive to initial 
values. Another main shortcoming is that these methods may 
converge to the local minimum of the least squares cost 
function, and thus cannot find the real values of the 
parameters.   

In general, a rational model contains a rational (linear 
fractional) function in the following format: 
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where the vector X  consists of the independent observation 
variables, the −p dimensional vector β  consists of all 
parameters in the rational function, which can naturally be 
divided into two groups: those in the numerator, 

Niβ ( Npi ,,1= ), and those in the denominator Djβ  

( Dpj ,,1= ), where we have that ppp ND =+ . The 
coefficient functions )(XiN  ( Npi ,,1,0= ) and )(XiD   
( Dpj ,,1,0= ) are the known functions of the independent 
variables and do not contain any unknown parameters.  Either 

)(0 XN  or )(0 XD  must be nonzero, and otherwise from 
identifiability analysis [6] the parameters in model (1) cannot 
be uniquely identified. 

In this study, we take use of the special structure of 
rational model (1): numerator and denominator are linear in 
parameters, and propose a new method to estimate the 
parameters in the rational models of molecular biological 
systems. In the proposed method, the cost function in all 
parameters is first reduced to a cost function only in the 
parameters in the denominator by a separable theorem [7]. 
Then the parameters in the denominator are estimated by 
minimizing this cost function by our developed new iteration 
method. Finally, the parameters in the numerator are 
estimated by a well defined least squares formula. Briefly, the 
reminder of paper is organized as follows. Section II 
introduces the proposed method. Section III provides an 
illustrative example to show the performance of the proposed 
method, comparing with the nonlinear optimization 
algorithm. Finally we give conclusions and future work in 
Section IV. 
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II. ALGORITHM DESCRIPTION 

Let us introduce some notation first. nR denotes the set of 
all n-dimensional column (or row) vectors; mnR × denotes the 
set of all mn×  matrices. The superscript T  denotes the 
matrix transpose. The Euclidian norm of an n-dimensional 

vector =a n
n Raaa ∈][ 21  is defined by ∑

=
=

n

i
iaa

1

2 . 

diag  ][ 21 naaa  (or diag  T
naaa ][ 21 ) is a 

diagonal matrix whose diagonal elements are ia  
( ),,2,1 ni =  sorted in this order. 

Suppose that at a series of time points we obtain a 
sequence of measurements (observations) of dependent 
variable: ty  ( nt ,,2,1= ), which can be represented by a 
rational function of independent variables and parameters. In 
practice, any measurements can be contaminated by some 
random noises. Assume that measurement errors are additive. 
Thus we have the relationship 

ttttty εηεη +=+= )(),( ββX ,    nt ,,2,1=            (2) 

where tε ( nt ,,2,1= ) stand for the measurement errors at 
time point t , and tX  ( nt ,,2,1= ) stand for the  measured 
or known values of independent variables at time point t . 
Assume that independent variables X  and parameters β  are 
non-random variables. Further, without the loss of the 
generality, assume that the measurement errors 

tε ( nt ,,2,1= )  have the mean of zeros. 
Define the two parameter vectors Nβ  and Dβ  for 

parameters in the numerator and in the denominator, 
respectively,  
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 Form a sum of squared errors (the cost function) 

)]([)]([),()( ββ ηYηYβββ −−== T
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Minimizing )(βJ with respect to β can give the least squares 
estimation of parameters Nβ  and Dβ .  
     As parameters β  are nonlinear in the rational function, 
Gauss-Newton iteration method and its variants [6] can 
typically be applied to estimation of these parameters by 
minimizing the cost function (4). However, it is well known 
that Gauss-Newton method may fall into a local minimum 
and thus cannot find the estimates of the parameters. We have 
observed that the parameters Nβ  are linear in the model 

),( βXη . Let NDDF ΦΨ= −1)]([)( ββ  and =)( DG β  
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From Theorem 2.1 in reference [7], if there exists an (n-k) × n 
matrix )(1 DβX having the rank of n-k and satisfying  

         0)()(1 =DD F ββX                                      (6) 
Then  

                )(min),(min
, DDN KJ

DDN
βββ

βββ
=                              (7) 

where the cost function )( DK β  

          
))()((])()([

))]()(([)(

1
1

11

1

DD
T

DD

T
DDD

G
GK

βYβXβXβX
βYβXβ

−
×−=

−
       (8) 

is independent of parameters in the numerator Nβ . Let Dβ̂  be 

the optimizer of (7) and (8), then Dβ̂  and Nβ̂ minimize the 

cost function (5), where Nβ̂  is calculated as follows: 
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 Let ⊥Φ N  be an (n-k) × n matrix with the rank of n-k 
orthogonal to matrix NΦ , then we can construct  

  )()(1 DND ββX ΨΦ= ⊥                      (10) 

From the definition of )( DβΨ  we have 
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where constant vector n
ND Rdiag ∈Φ−Φ=

00
][Yb , and 

constant matrix Ddiag Φ= ][YA  DpnR ×∈  are independent of 
estimated parameters 

Substituting (10) and (11) into (8) yields to  
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where matrix T

N
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DDND
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necessary condition for minimizing )( DK β with respect to 

Dβ  is that 0)( =∂∂ DDK ββ , which gives 
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where matrix ][ 1 DpuuU =  and its i-th column vector 
is defined as  
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From (13), we propose an iteration formula to solve 
optimization problem (7) as follows: 

)]()()(         

)()([])([

0
1

111

k
D

Tk
DN

k
D

T

N
T

k
D

k
D

Tk
DN

k
D

T

N
Tk

D

βuβUbβMA

ββUβUAβMAβ

−ΦΦ−

ΦΦ=
⊥−⊥

−⊥−⊥+

       (15) 

III. ILLUSTRATIVE EXAMPLE 
The expression of a gene is regulated by regulatory 

proteins and/or RNA polymerase (RNAP) which are binding 
to gene’s regulatory binding site [1]. The regulatory binding 
site of a gene is a short piece of DNA sequence closed to it. 
One gene can have a number of binding sites. The binding 
sites for regulatory proteins are called operators while those 
for RNAP are called promoters. A gene regulatory network is 
a collection of genes that regulate one another’s expression 
rates through their encoded proteins which serve as 
regulatory proteins. To illustrate the proposed algorithm, this 
section will consider the parameter identification of one 
simple gene regulatory network with one gene, two operators 
and one promoter as shown in Figure 1. 

Based on the statistical thermodynamic theory and 
biochemical kinetics, the model of this network can be 
expressed as follows [1]:   
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where x is the concentration of protein encoding by the gene, 
ai  (i = 0,1,2) and bi  (i = 1,2) are positive constants related to 
the biochemical kinetics and λ is a positive constant  
representing the protein degradation rate. One can see that 
model (16) is a rational model with positive parameters λ, ai 
and bi. Note that model (16) is slightly different from the one 
in reference [1]. To uniquely identify parameters in model 
(16), we have rescaled the parameters such that the constant 
term in the denominator is 1. 

 

 
Figure 1. A gene regulatory network with one gene, two 
operators (Op1 and Op2) and one promoter (Pr). 

  
In this study, a group of artificial data is generated from 

the model of gene regulatory system (16), with nominal 
parameter values and initial states provided. The nominal 
values of parameters are set as: a0=0.4, a1=2.8, a2=0.24, 
b1=0.5, b2=1.4, λ=0.4. In this example, we use the nominal 
values to generate the trajectory of x(t) shown as in Figure 2, 
The time starts at t= 0s. From Figure 2, system (16) is stable at 
its steady state x* = 2.18 after 10s. Therefore, we don’t use the 
simulated data after 10 seconds. 
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Figure 2. Trajectory of system (16) 

 
 There is no noise added on the artificial data in the 

simulation, so they can be considered as noise-free 
measurements. Nevertheless, unreasonable noises can be 
introduced in numerically calculating the derivatives by finite 
difference formulas. In general, the higher the sampling 
frequency and more data points are used, the more accurate 
the numerical derivatives are. On the other hand, in practice 
we may not obtain data with high frequency because of 
experimental limitations. In this study, the sampling 
frequency is 100Hz. In numerically calculating the 
concentration change rate (derivative )(tx ) at each time point 
from concentration x, we adopt the five-point central finite 
difference formula as follows. 
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 After obtaining the derivatives at different sampling 
points, we can apply the proposed method to estimating 
parameters in these models. The relative estimation error is 

Op2 Op1 Pr Gene 

Protein Protein 

RNAP 
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employed to measure the performance of estimation methods. 
The relative estimation error (REE) is defined as: 

valuetrue
valuetrueestimate
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_
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In system (16), the right-handed side is a linear fractional 
function plus a function linear in one parameter, which is not 
the same format as in (1). For the purpose of parameter 
estimation, we can transform system (16) into the following 
model 
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although the numerator is not linear in 6 original parameters 
any more in model (16). However, if we view a single 
coefficient as a new parameter, the numerator in model (20) is 
linear in the new parameters. In addition, as there are 6 
parameters in 6 coefficients in model (20), using our method 
the 6 original parameters can be uniquely identified.  

 Parameters in model (16) are estimated by using three 
methods: 1) directly minimizing the objective function (4) by 
nonlinear optimization method; 2) minimizing the objective 
functions (7) and (8) by nonlinear optimization method; and 
3) minimizing the objective functions (7) and (8) by the 
proposed iteration formula (15). These three methods are all 
iterative-type, and need the initial values to start-up. In this 
study, initial values are chosen as true values plus a relative 
Gaussian noise, i.e. 

  Initial value = true_values·(1+σ•ε)                  (21) 

where ε follows the standard normal distribution and σ is the 
standard deviation. These methods are implemented in 
Matlab version 7.01, MS Windows XP Professional SP2, 
Pentium [R] D CPU2.80GHZ and 2.00 GB of RAM. In 
Methods 1) and 2), the Matlab embedded function 
fminsearch() is directly called. 

When the initial values of all 6 parameters are initialized 
by formula (21) with σ=1, method 1) converged to the values 
far from the true value in 20 out of 20 (=100%) runs. When 
the initial values of 2 parameters in denominator are 
initialized by formula (21) with σ=1 and others are taken the 
true values, method 1) converged to the values far from the 
true value in 18 out of 20 (=90%) runs. This indicates that the 
nonlinear optimization is not effective to estimate the 
parameters in the rational model when the initial values 
moderately deviate from the true values. 

 In the following we mainly compare the proposed method 
with method 2) to minimize the objective function (7) and (8). 
These two methods only need the initial values of parameters 
in the denominator. The initial values of 2 parameters in the 
denominator are initialized by formula (21) with σ=1. The 
results are listed in Table 1. REE is for the minimum REE 
over 20 runs. The CPU time is average running time over 20 
runs.  Robustness is the percentage of runs converging with 
the minimum REE. 

 

Table 1. Comparison between proposed method and 
nonlinear optimization method 
 

 CPU Time (s) REE Robustness 
Proposed 
method 3.3657 0.0236 90% 

Traditional 
method 26.3656 0.0236 80% 

 
From Table 1, the proposed method shows the same 

estimation accuracy as the nonlinear optimization method if 
both methods converge in terms of the relative estimation 
error. However, the proposed method uses much less CPU 
time to converge and is more robust (insensitive) to the initial 
values than the nonlinear optimization method.   

IV. CONCLUSION 
In this paper, we have developed a method for estimating 

parameters in the rational models of molecular biological 
systems. The results from the illustrative example have 
shown that the proposed method consumes much less CPU 
time to converge and is more robust to the initial values than 
the nonlinear optimization method. In this study, we do not 
consider the noises in the data except those introduced by 
numerical derivatives. One direction of future work is to 
investigate the robustness of the proposed method to noises in 
the data. In addition, low sampling frequency is expected in 
practice, particularly for biological systems. Another 
direction of future work is to investigate the performance of 
the proposed method with low sampling frequency. 
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