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Abstract—Epileptic seizures were experimentally induced in the CA3 

region of rat hippocampus in vivo.  Recordings of seizure activity 

were made in both hippocampi as well as anteromedial region of the 

thalamus in order to analyze the instantaneous activity for 

synchronous oscillators.  A new method is introduced for detecting 

this synchrony which combines empirical mode decomposition, the 

Hilbert analytic signal method and eigenvalue decomposition.  

Effects of targeted deep brain stimulation on multi-site synchrony 

were assessed as a means to extinguish hypersynchrony during 

epileptic seizures. 
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I.  INTRODUCTION 

Synchronous oscillatory activity has been found to be 

a critical component in both normal brain states such as 

binding of visual information [1] as well as pathological states 

such as Parkinson’s disease [2] [3], schizophrenia [4], 

Alzheimer’s disease [5] and epilepsy [6] [7].  However, 

detecting synchronization behavior in the brain represents an 

extraordinarily difficult problem in neurological science.  

Although various statistics have been proposed for the 

detection of phase synchrony from multiple electrodes placed 

at varying degrees of neuronal resolution (i.e. depth, subdural 

and/or surface), many of these methods rely on several 

assumptions that render them inappropriate for detecting 

synchrony in the brain.  All electrophysiological signals 

besides single cell recordings are a summation of activity from 

areas surrounding the electrode.  In particular, local field 

potentials (LFPs) represent a sum of dendritic activity that 

may be inhibitory or excitatory (inhibitory or excitatory post-

synaptic potentials, respectively).  Thus, these signals 

represent multiple components leading to a necessity for 

filtering.  Most often, filtering of these signals involves either 

clinically determined ranges (e.g. alpha, beta, etc.) or Fourier 

spectrum derived bandwidths.  Although these bandwidths 

determined a priori may, in many cases, yield useful narrow 

band signals, it would be more advantageous for a filtering 

algorithm to make no assumptions as to the underlying 

components of the signal under study.  

An ideal analysis method would be capable of 

extracting proper waveforms adaptively from the time series 

without any a priori assumptions and without the need to build 

complicated mathematical models derived from first principles 

(a daunting task for modeling dynamics beyond anything but a 

small population of neurons).  A relatively recent technique 

combining well-known results in linear algebra and mean-field 

theory has been proposed to obtain significant synchrony 

clusters within bivariate phase data measures.  This method, 

termed the “eigenvalue decomposition method”, utilizes 

directional statistical features of the phase dynamics between 

any two oscillatory signals to define significantly 

synchronized clusters of oscillators [8] [9].  This type of 

analysis relies on an assumption that there are several mean 

fields of globally coupled phase oscillators within the signal 

set.  This approach figures prominently in our new analysis.  

We present here an analytic process applied to intracranial 

EEG information recorded in multiple deep brain nuclei 

bilaterally in the rat brain that merges the techniques of 

empirical mode decomposition, the Hilbert analytic signal 

method, mean phase coherence measures and finally 

eigenvalue decomposition to ultimately identify complex 

instantaneous synchronous behavior.  Such a procedure may 

provide important new insights as a seizure or any other 

complex neurological process in the brain evolves in time and 

space.   

II. METHODS 

A. Surgical Procedure/Data Acquisition 

Male Sprague-Dawley rats, 48-57 days old and 

weighing approximately 225-280 gm were used in this study.  

Experiments were conducted in accordance with the National 

Institutes of Health for the care and use of laboratory animals.  

Rats were anesthetized by a mixture of Ketamine (70 mg/kg) 

and Xylazine (2 mg/kg) delivered intraperitoneally.  All 

procedures were performed in a Kopf stereotactic frame 

(KOPF Model 900, CA, USA).  Stereotactic targets were 

calculated using a stereotactic rat brain atlas [10].  The skull 

was perforated using a high speed stereotactic drill 

(Micromotor 
TM

 Drill, Stoelting Co, IL USA) with 1.2-2 mm 

diameter drill tips. Bipolar electrodes surrounding a single 

stainless steel injection cannula in one integrated electrode 

assembly (C315G-MS 303: PlasticsOne, Roanoke, VA, USA) 

were stereotactically implanted into the CA3 region of the left 

hippocampus (-3.5 mm Bregma, 2.8 mm lateral, 3.7 mm 

deep). Bipolar recording electrodes (without cannula) were 

implanted into the contralateral hippocampus and 

anteromedial thalamus (-1.8 mm Bregma, 0.3 mm lateral, 6.1 

mm deep).  After injection of epileptogenic chemicals into the 

CA3 region of the left hippocampus, the internal cannula 
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insert was withdrawn and a stainless steel insert was threaded 

through the cannula to provide one side of the recording pair. 

We used a chemical induction model of epilepsy in order to 

induce a physiological state that has been classically described 

as “hypersynchronous”.  Each experiment involved recording 

one half hour of baseline activity followed by focal injection 

of 3 – 5 nmol kainic acid into the CA3 region of the left 

hippocampus. 

B. Empirical Mode Decomposition 

Traditional spectral decompositions applied to time 

series usually involve an assumption that the underlying signal 

dynamics consist of a linear superposition of complex 

exponentials.  However, these radial basis functions are 

always assumed a priori rather than obtained adaptively from 

the signal.  If the signal of interest contains more than just 

pure sine and cosine functions, the resulting power spectrum 

obtained from Fourier analysis, for example, will contain 

spurious power readings and energy spreading that actually 

represents nonlinearities in the data.  This is because 

nonlinearities in the data will be represented within the Fourier 

power spectrum as higher-order harmonics since the transform 

itself utilizes a superposition of trigonometric functions.  

However, once the transform has been implemented, it is 

difficult to distinguish true power-frequency readings from 

spurious energy spreading due to nonlinearities inherent 

within the system.  Furthermore, Fourier transform methods 

require piecewise stationarity of the time series under study.  

Thus any time-varying frequency content (usually present 

within EEG data) will be averaged out in the power spectrum.  

Although calculation of Fourier spectrograms has been 

proposed as a means to detect non-stationarity, this method 

still relies on linearity of the time series.  Ideally, a 

decomposition method would be capable of extracting 

underlying oscillators from a seizure signal without any 

assumptions of the underlying waveform or characteristic 

time-scales of the oscillators.  Recently, Huang and 

collaborators introduced EMD, a method for the extraction of 

(potentially non-linear and non-stationary) oscillators from 

any time series in an adaptive fashion [11]. 

The EMD can be characterized as an adaptive, data 

driven decomposition that results in a series of intrinsic mode 

functions (IMFs) that together comprise the underlying 

oscillations (or basis functions) within a dataset.  The basis 

functions are determined from the dynamics of the signal itself 

which may be non-linear and/or non-stationary.  Any time 

series may be represented as a linear combination of 

oscillators: 

                   N 

x(t) = Σ aj φj(t).           (1) 

             
j=1

 

In Fourier decomposition, for example, each φj(t) is a sine or 

cosine with a corresponding Fourier coefficient, aj, for each 

φj(t).  In order to improve the decomposition of a time series to 

account for non-stationarity, other decompositions such as 

wavelet analysis have been applied; however, while they allow 

for non-stationarity, the basis functions are, again, determined 

before the decomposition and thus may be inappropriate for 

nonlinear signals.   

The EMD has been mainly applied to hydrologic 

[12], atmospheric [13] and oceanic [14] time series, but it is 

widely believed to be applicable to any time series.  The 

method can be briefly outlined as follows: The decomposition 

begins by identifying all maxima and minima of the data set 

followed by interpolation between the extrema using a cubic 

spline to obtain a maximum envelope emax(t) and a minimum 

envelope emin(t).  Next, the average of the envelopes m(t) = 

[emax(t) +  emin(t)]/2 is computed and subtracted from the 

original data x(t) to obtain a residual r(t) = x(t) – m(t).  This 

process is then repeated on the residual in an iterative fashion 

to obtain a series of IMFs.  Because this is a numerical 

approximation scheme, the procedure must be refined by 

sifting the data through iteration of the first few steps (prior to 

subtraction of the mean) to obtain a zero-mean amplitude- and 

frequency-modulated signal which may be called a “proper 

rotation” or an IMF.  Practically, the sifting process is 

optimized according to the particular data-set by defining an 

appropriate stopping criterion using, for example, number of 

sifts [11] accumulated energy [15], or confidence limit criteria 

[16] After the sifting and iteration procedure is complete, one 

obtains a series of modes plus the “trend” that represents the 

remainder of the decomposition when further sifting will not 

result in a proper IMF.  

C. Eigenvalue Decomposition 

Once the highest energy IMFs are obtained from each 
channel within a data segment, it is desirable to determine the 
strength of the relationships between oscillators.  To 
accomplish this, each IMF is treated as a row vector and 
compiled into an m x n matrix, where m is the number of IMFs 
obtained from the analysis and n is the length of the time series.  
This set of time series represent the significant oscillators 
decomposed from the original time series via EMD.  Next, the 
mutual phase coherence is calculated [17] this quantity is 
defined as:  

   Rjk = ∑ exp[i(φj(t)-φk(t)],                         (2) 

where “exp” represents the exponential, “i” is √-1, and each 

φ(t) is the phase of the analytic signal sampled at each discrete 

time instant.  The sum ranges from j,k = 1 to N (j≠k).  This 
matrix is then analyzed for its eigenvalues and eigenvectors.  
For any eigenvalue-eigenvector pair, a phase correlation value 
may be assigned as the strength of the connection of a given 
eigenvalue (unique for a given IMF) and an eigenvector 
(unique for the entire set of IMFs obtained from all channels).  
Furthermore, each eigenvalue is ordered, with the largest 
eigenvalue representing the most strongly correlated cluster 
with the participation of each oscillator in a given cluster 
quantified by the value of the eigenvector.  Specifically, one 
can assign the strength of the connection (participation) 
between the phases of any two IMFs within a single group via 

the square root of the IMF-associated eigenvalue (λn) 
multiplied by the component-wise square of the IMF channel 
group eigenvector (v

2
n): 

   √[λnv
2

n]            (3) 
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For example, if a matrix of completely unsynchronized 

oscillators is analyzed in this way, one would obtain λ1 = λ2 = 

… = λn = 1 with vj = (0, 0, … , 0, 1, 0, 0, …, 0) and no clusters 
would be identified in equation (6).  If a set of fully 
synchronized oscillators is analyzed, one would obtain a single 
eigenvalue, whose value is identical to the number of 
oscillators, N, with v1 = (1, … , 1) and a single cluster in 
equation (4).  Finally, for a set of oscillators with varying levels 
of synchrony, one would obtain a set of (strictly positive) 
eigenvalues.  Those eigenvalues above one are considered 
significant and the components of their eigenvectors identify 
participation in the corresponding cluster calculated via 
equation (4).  This threshold is set because, if a set of 
uncorrelated eigenvalues becomes more correlated, any 
increase in the eigenvalue must be offset by a corresponding 
decrease in other eigenvalues (as the sum of the eigenvalues is 
conserved).  The eigenvalue decomposition method as cluster 
analysis is introduced and described in detail in ref. [8]. 

III. RESULTS 

Depth recordings of brain activity were made from the CA3 

region of the hippocampus bilaterally as well as in the 

anteromedial thalamus (targeted stereotactically) and over the 

surface of one hemisphere (contralateral to the hippocampus 

focally injected with kainic acid) in twelve rats.  Both baseline 

and induced seizure activity was recorded for subsequent 

analysis.  Figure 1 shows a ten-second sample for ictal 

activity.  Visual inspection suggests a high degree of 

synchrony between all four electrode sites.  Furthermore, the 

signals originating in both hippocampi appear more similar in 

waveform to one another than to anteromedial thalamus or the 

subdural signal.  It should be noted that baseline activity 

represents brain activity in an anesthetized rat, as these are all 

acute in vivo studies.  Thus, recordings made in these 

anesthetized animals show some level of pre-seizure 

synchrony most likely due to the activity of the anesthetic on 

the brain.    

 

 

 

 

The Hilbert analytic signal was constructed for each 

IMF in order to calculate the instantaneous phase for all 

selected IMFs.  Then, the mean phase coherence was 

calculated for the entire matrix of phase values from each ten 

second sample.  Finally, the eigenvalue decomposition was 

performed on this new mean phase coherence matrix to 

identify significantly synchronized clusters.  A summary of all 

values of the participation index for these samples is shown in 

Figure 2 for the ictal samples corresponding to those in Figure 

1.  The red box indicates those clusters that are identified as 

significant (eigenvalues greater than 1).  In general, interictal 

and baseline cluster analyses reveal fewer clusters than the 

same analysis for seizure samples. The interictal sample 

revealed four significant clusters while the ictal sample 

showed six.  Furthermore, the frequencies of the oscillators 

participating in each cluster (as measured by maximal 

participation index value) were similar in the pre-ictal and 

interictal samples (data not shown).   

 

 In order to highlight the instantaneous synchronous 

relationship between oscillators participating in a given 

cluster, the difference between the phases for each oscillator 

pair in the most significant cluster (highest eigenvalue) was 

calculated and plotted in Figure 3.  These plots demonstrate 

the phase dynamics of the entire cluster.  Because these 

oscillators are noisy, there are a number of phase slips (i.e. a 

change in the phase difference of 2π) thus the absolute value 

of phase difference is not relevant.  However, those areas 

where the phase difference remains approximately constant 

represent regions of synchronization.  Several of these areas of 

phase synchronization are highlighted in the figure by 

parentheses.  Oscillators originating from the subdural 

electrode were not included in this analysis because these 

signals represent a summation of all activity within the (large) 

hemispheric dipole.  Therefore, much of the activity recorded 

on that channel is contained within recordings made from 

subcortical sites.  Thus, any synchrony between these 

oscillators and those obtained from depth sites is likely to be 

spurious because there will be high synchrony between 

identical oscillators.  The ictal sample shows not only more 

oscillators, but also more regions of phase synchrony than the 

interictal samples.  Furthermore, the phase synchrony is not 

constant between any two brain areas.  Instead, the synchrony 

appears between different brain nuclei over time in an 

apparently reverberating circuit.  

Figure 1: 10 second ictal sample.  A: Focal Hippocampus.  B: 

Anteromedial Thalamus.  C: Contralateral Hippocampus.  D: Subdural 

recording over contralateral hemisphere.  

 

Figure 2: Participation Matrix. Abscissa shows the eigenvalue index 

number with λ1 < λ2  < … < λn.  Ordinate shows intrinsic mode function 

index. FH = Focal Hippocampus, T = Anteromedial Thalamus, CH = 

Contralateral Hippocampus, S = Subdural electrode over Contralateral 

Hemisphere.  Gradient scale indicates participation strength.  Box 

demarcates significant clusters (whose eigenvalues are greater than  1). 
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IV. DISCUSSION 

Synchronized activity is implicated at all levels of 

neural activity in both pathological and normal states.  It may 

be that both long- and short-range synchronization throughout 

the brain is a normal component of sensory and cognitive 

processing and that pathological states represent a 

derangement of this normal synchronization behavior.  

However, in order to characterize this synchrony in either 

pathological or normal states, it is necessary first to define a 

measure that is capable of detecting any form of synchrony 

that may arise.  It is suggested here that prior filtering of a 

time series by a means that presupposes the underlying 

waveform and/or frequency content of the signal may 

eliminate important features of the signals underlying phase 

synchrony dynamics.  Thus, it is proposed that a dynamic filter 

such as empirical mode decomposition is first employed in 

order to isolate any underlying oscillators.  However, one 

important consideration in utilizing this technique is whether 

these intrinsic mode functions represent actual physiological 

oscillators or merely depict the phase dynamics of one or more 

physiological oscillators.  This limitation is unlikely to 

interfere with synchrony analysis, but it may cause problems 

with direct physical interpretation of the oscillators obtained 

from the decomposition.  Nevertheless, no other 

decomposition method to our knowledge is capable of yielding 

true physical oscillators at this point as all of them rely on 

some assumption as to the oscillator waveforms underlying the 

signal and usually involve fitting the time series to some a 

priori determined wave (e.g. a sine wave).  

The analysis presented here is proposed as a means to 

determine the fine structure of phase dynamics during seizure 

activity in the brain.  However, this method may be utilized to 

decompose and analyze phase dynamics in any time series 

thought to have multiple underlying oscillators contributing to 

nonstationary spatiotemporal phase dynamics.   
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Figure 3: Largest Participation Cluster Phase Differences.  This cluster 

contained two focal hippocampus (FH) IMFs, one thalamus (T) IMF, 

and two contralateral hippocampus (CH) IMFs.. Areas where the phase 

difference is constant parentheses) represent synchronous epochs.   
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