
  

  

Abstract—Since the 1950s, we have developed mature 
theories of modern control theory and computational 
neuroscience with almost no interaction between these 
disciplines. With the advent of computationally efficient 
nonlinear Kalman filtering techniques, along with improved 
neuroscience models that provide increasingly accurate 
reconstruction of dynamics in a variety of important normal 
and disease states in the brain, the prospects for a synergistic 
interaction between these fields are now strong. I show recent 
examples of the use of nonlinear control theory for the 
assimilation and control of single neuron dynamics, the 
modulation of oscillatory wave dynamics in brain cortex, a 
control framework for Parkinsonian dynamics and seizures, 
and the use of optimized parameter model networks to 
assimilate complex network data – the ‘consensus set’. 

I. INTRODUCTION 
ODEL  based predictor-controller systems 

employ a computational model to observe a 
dynamical system, assimilate data through 
sensors, reconstruct and estimate the remainder of 
the unmeasured variables and parameters using the 
model, and then calculate a control vector to 
generate a desired manipulation of the system. The 
result of the actual system dynamics is then 
compared with the predicted outcome, the 
expected errors within the model are updated and 
corrected, and the process repeats iteratively. This 
extremely powerful recursive control engineering 
framework has never been applied to the range of 
significant applications to bio-medical 
applications that it warrants. 

 Model based predictor-controller algorithms 
were developed in parallel with the US space 
program in the 1960s. The most prominent of such 
strategies was the Kalman filter [1], which for 
linear systems is a maximum likelihood estimator 
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that gives the optimal tracking of system state and 
calculation of control vectors to modulate such 
states. The dual theorems of observability and 
reachability for such systems have been 
considered one of the most important 
developments in mathematics of the 20th century 
[2]. Observability and reachability theorems 
essentially state that if you can observe a system’s 
state variables, you can optimally control it (reach 
a given state). Incredibly, these theoretical 
concepts have been largely absent in the 
observation and control of complex biological 
systems.  

 Of course the linearized equations of motion 
of missile guidance are a far cry from more 
complex biological system applications. In the 
decades since Kalman’s seminal work in the 
1960s, the extended (linearized) Kalman filter 
approaches for nonlinear systems have met with 
mixed success. Even the simplest of nonlinear 
system dynamics, such as sine and cosine 
functions to convert bearings to common 
coordinates, are notorious for being terrible 
candidates for linearized Kalman approaches [3].  

 It was the advent of true nonlinear predictor-
controller algorithms that has opened for us an 
entirely new set of possibilities for biological 
systems. These methods have been in large part 
driven by the meteorological use of nonlinear 
convection models of the atmosphere in data 
assimilation and weather prediction, termed 
ensemble Kalman filtering [4-5]. In parallel with 
this meteorological work, Julier and Uhlmann 
[3,6] published a nonlinear Kalman strategy 
termed the unscented Kalman filter (UKF). These 
strategies were based on using fundamental 
nonlinear models directly, while iterating the noise 
and error expectations through these nonlinear 
equations. The Bayesian framework for updating 
predictions with measurements remains the same 
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as linear Kalman filtering. By employing an 
optimized sparse sampling of the possible 
dynamics, the UKF can be computationally 
efficient.  

 The UKF can be viewed as a very efficient 
and selective ‘particle filter’. Particle filtering 
creates a large number of initial conditions based 
upon the probability distribution function of the 
errors in a system, and iterates all of the ‘particles’ 
through the linear or nonlinear equations of the 
system. This brute force Monte Carlo scheme can 
be extremely powerful, but is computationally 
very inefficient. There have been a wide variety of 
schemes for selecting subsets of initial conditions 
(reviewed nicely in [7]). There are several 
computational neuroscience applications of 
particle filtering in recent years including [8] and 
[9], each nicely outlining the natural links with 
Bayesian state estimation. But as [7] exhaustively 
demonstrates, UKF is not only more efficient, but 
often more accurate, than particle approaches.  

 It is truly remarkable how well UKF methods 
can estimate state in highly nonlinear, even 
nondifferentiable systems. Although heavily used 
now in robotics [10], this nonlinear filtering work 
has been developed in almost complete isolation 
from biology and medicine. It was a 
groundbreaking study by [11] that demonstrated a 
clear strategy for applying UKF to a model single 
neuron. In their work, [11] were not at all 
optimistic that spatiotemporal applications of cell-
to-cell interactions would be tractable. 

 Simultaneous with the work of [11], we 
demonstrated that mammalian cortex can generate 
a wide variety of spatiotemporal structures to 
accompany typical oscillation frequencies 
observed in motor, sensory, and navigational 
cognitive phenomena [12]. In this work, we also 
demonstrated that a fundamental model of general 
cortical dynamics, the networked differential 
equations of Wilson and Cowan [13-14], can 
replicate all of the qualitative dynamics seen in 
these experiments: ring, plane, spiral, and irregular 
waves.  

 We have recently extended the work of [11] to 
cell-to-cell interactions in a spatiotemporal system 
[15]. Our control system was designed to speed 

up, slow down, or quench spatiotemporal 
oscillations in cortex. We performed this work 
using a model of the middle layers of cortex, 
reflecting cellular dynamics as well as cell-to-cell 
communications, and we incorporated an 
‘observer’ model to track and filter the real 
system, as well as generate the control vector to 
modulate the system. We proved that the use of an 
observer system is a substantial improvement in 
the tracking and control of such systems when 
noise is sufficiently high [15]. It is now 
increasingly recognized that transient cortical 
oscillations, seen ubiquitously in sensory and 
motor cortices, reveal spatiotemporal wave 
patterns when modern multisite optical [16] or 
electrical [17] measurements are made. We are 
unaware of any previous nonlinear state estimation 
for such spatiotemporal neuronal data. 

 Nevertheless, incorporating the results of [15] 
directly into real-time experiments is premature. 
In order to stabilize our algorithms, we needed to 
empirically adjust the covariance of the estimated 
state. This is a universal problem in all nonlinear 
ensemble Kalman filters, and even the seminal 
work of [6] incorporated a multiplier to adjust 
estimated covariance. Later, in the meteorological 
literature, [18-19]  termed this strategy covariance 
inflation, and we followed the formalism of [20] 
in adjusting our covariance estimate of state.  
There have been a variety of additional schemes 
suggested for adjusting covariance inflation, and 
an efficient method for handling real-time 
biological systems awaits development. 

We have explored taking the foundational ionic 
dynamical equations of neuronal excitability, the 
Hodgkin-Huxley equations [21], and incorporated 
them into an ensemble Kalman framework [22]. 
We found that not only can we measure voltage 
alone and reconstruct the entire set of parameters 
and variables in the setting of significant noise, 
but we can deliberately damage this model 
(assuming constant values of the sodium rate 
variable), and still get adequate reconstruction. 
Assigning such trivial dynamics is what [11] did 
with neuronal threshold, and works because of the 
iterative nature of the UKF framework. What 
happens is that in UKF constant parameters with 
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trivial dynamics can be tracked if the iteration 
time constant is fast compared with the dynamical 
parameter being tracked. Obviously one can only 
carry this so far in a model, but again, the potential 
robustness of ensemble Kalman filters to model 
inadequacy is quite intriguing.  

We have also done considerable work to explore 
the metabolic dynamics of potassium flow into 
and out of cells and compartments during neuronal 
activity [23-24]. We found that combining such 
dynamics with biophysical neuron dynamics was 
possible, and showed how measuring voltage 
could permit reconstruction of potassium 
dynamics in the extracellular space, and vice versa 
[22].  

Another finding is that such use of a Bayesian 
assimilation of data, combined with UKF, offers 
the prospect of an improvement in dynamic clamp 
approaches [22], where the typical data 
assimilation technique of direct insertion [25]  has 
been shown to be non-optimal compared with an 
optimized ensemble Kalman strategy.  

Lastly, all neurons are different – we therefore 
need to account for significant parameter 
variations in our model systems. We need a 
method that treats heterogeneity in neurons 
formally, and our solution is what we term the 
‘consensus set’ of parameters. It turns out that it is 
straightforward in ensemble Kalman filters to let 
the filters seek a local mean field for model 
parameter averaging. Surprisingly, such local 
mean fields frequently converge to values close to 
the true mean values, but it is not at all clear that 
such convergence to the true values is necessary. I 
say this because we need to track dynamics, and 
not validate models in systems where we can 
never truly replicate the full underlying 
biophysics. We therefore developed a consensus 
set to optimize the mean field parameters for a 
region in space, and afford tracking of this noisy 
heterogeneous system [26].  

There are a variety of disease dynamics for 
which such strategies are of potential use. These 
include epilepsy and Parkinson’s disease, as well 
as modulation of oscillatory wave dynamics in 
brain. I will show a variety of numerical and 
experimental results representing such work in 

progress. 
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