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Abstract— Approximately 300,000 Americans suffer from
epilepsy but no treatment currently exists. A device that could
predict a seizure and notify the patient of the impending
event or trigger an antiepileptic device would dramatically
increase the quality of life for those patients. A patient-specific
classification algorithm is proposed to distinguish between
preictal and interictal features extracted from EEG recordings.
It demonstrates that the classifier based on a Cost-Sensitive
Support Vector Machine (CSVM) can distinguish preictal from
interictal with a high degree of sensitivity and specificity, when
applied to linear features of power spectrum in 9 different
frequency bands. The proposed algorithm was applied to EEG
recordings of 9 patients in the Freiburg EEG database, totaling
45 seizures and 219-hour-long interictal, and it produced
sensitivity of 77.8% (35 of 45 seizures) and the zero false positive
rate using 5-minute-long window of preictal via double-cross
validation. This approach is advantageous, for it can help an
implantable device for seizure prediction consume less power
by real-time analysis based on extraction of linear features and
by offline optimization, which may be computationally intensive
and by real-time analysis.

I. INTRODUCTION

Epilepsy is one of the most common neurological diseases.
Approximately 5% of the population experience a seizure
within their lifetime, and 1% suffer from multiple seizures,
classifying them as epileptic. This disease affects nearly 3
million Americans with an estimated annual cost of $15.5
billion in direct and indirect costs per year [1]. A difficult
aspect of epilepsy is the unpredictable nature of seizures.
Many epileptics live in constant worry that a seizure could
strike at an inopportune time resulting in humiliation, social
stigma, and/or injury. Therefore, an implantable device that
could predict a seizure by even a few seconds could dra-
matically change the lives of these patients by alerting them
to the impending seizure or triggering a device to abate or
suppress the seizure. As yet, however, there is no device or
algorithm that provides sufficient power of prediction.

It has long been observed that there are some signals that
indicate a seizure is approaching. Approximately 40% of
temporal-lobe epileptics demonstrate some form of aura, a
sensory perception that indicates a seizure is looming [2].
Epileptologists have also been able to see a change in EEG
prior to the onset of a seizure and have labeled it the preictal
quiescence or the electrodecremental period [3].
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However, creating a reliable algorithm for seizure predic-
tion has been elusive. Seizure prediction algorithms using
power spectrum [4][5] and cross-correlation between EEG
recordings [6][7] have seemed to perform successfully on
short windows of EEG data taken immediately before a
seizure. But, when compared to EEG recorded for long
periods of time, capturing all the changes in the above
features measured over the day as a patient undergoes in and
out of different conscious states, those algorithms produced
a significant number of false positives.

The reason that seizure prediction with high sensitivity and
specificity has been difficult to achieve may be the approach
itself; thus, we choose an alternative classification approach.
Most of the approaches to seizure prediction have been
hypothesis-based, where scientists select a certain feature
that they believe changes prior to a seizure. However, no
feature has been found to be unique to the seizure onset, so
these approaches have resulted in many false positives. The
alternative approach we used is based on machine learning
methodology, where we supply an algorithm with enough
data in which EEG is identified as preictal (immediately
preceding a seizure) or interictal (ordinary between seizures),
as shown in Fig. 1, and let a computer optimize the algorithm
to classify those two data sets. This approach is powerful, for
the combination of certain sets of features can be examined
and complex relationships among the features for finding
the seizure onset, which probably could not be found by a
human, can be investigated.

Of the available classifiers, we have chosen the support
vector machine (SVM) [8], which is currently the most
powerful. Due to its robustness for estimating predictive
models from noisy, sparse and high-dimensional data, SVM
methodology has been successful in many applications rang-

Fig. 1. Seizure recorded with EEG. Ictal (seizure) event shown in green, is
immediately preceded by a window we define as “preictal.” Windows prior
to or an hour following a seizure are considered “interictal.”
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Fig. 2. Support vector machine. Points from two classes are divided by a
plane (indicated as line here) in a high dimensional space. Vectors parallel
to the dividing line, the support vectors, are used to minimize the error
for optimal division of space. Figure from http://research.microsoft.com/en-
us/um/people/cburges/papers/svmtutorial.pdf
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Fig. 3. Flow chart of seizure prediction algorithm

ing from genomics to financial data analysis and signal
processing, in addition to seizure detection [9]. SVM finds a
mapping of the data into a new space where a linear hyper-
plane is used to separate the two classes. This is graphically
illustrated in Fig. 2.

The cost-sensitive SVM (CSVM) is more suitable for
seizure prediction than conventional SVMs, for CSVM can
weigh important classes more. It is critical in seizure pre-
diction to treat signals from preictal more significantly than
those from interictal, for misclassification of the former is
much more penalized than that of the latter and moreover
the former is much sparser. By putting more weight on
preictal, CSVM can outperform conventional SVMs as a
seizure predictor.

II. METHODS

A. Outline and Patient Database

The seizure prediction algorithm consists of preprocess-
ing, feature extraction, preparation of data for classification,
classification, and postprocessing, as outlined in Fig. 3. Each
step will be discussed in its sub-section in detail.

We have tested our algorithm on the Freiburg dataset
(https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-
project/eeg-database). This database contains ECoG
(intracranial EEG) recordings from 21 patients that suffer
from medically intractable focal epilepsy. We selected 9 out
of 21 patients, choosing those that had five seizures recorded
at least, for performing double-cross validation smoothly.
For each patient, six EEG electrodes, 3 at the seizure focus
and 3 distal to the focus, were provided in the database,
sampled at 256 samples per second. Seizure onsets were
identified by an epileptologist, and onset times are provided

in the database. Preictal EEG signals are presumed to be
recorded in five minutes immediately before each of seizure
occurrences. Interictal data for each patient totaled 24 to 26
hours, excluding EEG recordings at least one hour before
or after a seizure. A total of 45 seizures and 219-hour-long
interictal data from 9 patients in the Freiburg database were
examined.

B. Preprocessing

EEG data is subject to many artifacts, such as line noise,
electrical noise and movement artifacts. Many of these
artifacts may produce signals that can distort normal EEG
data, therefore causing outliers in much of the analysis and
finally leading to faulty analysis. For preliminary analysis,
we discarded windows which contain artifacts identified by
visual inspection. We also removed line noise with notch
filters and detrended each window before analysis.

C. Feature Extraction

Power in the following 9 different spectral bands from
each of the 6 electrodes was extracted in each preictal or
interictal window, which is 20-second-long and half over-
lapped with the prior: delta (0.5-4Hz), theta (4-8Hz), alpha(8-
13Hz), beta(13-30Hz), four gamma(30-50Hz, 50-70Hz, 70-
90Hz, 90Hz-), and total power, as shown in Fig. 4. This
builds 54 dimensions (6 electrodes and power in 9 bands per
electrode) in the input space of each window.

D. Preparation of Data for Classification

Double cross-validation was used: a portion of data are
used for training the classifier and the other portions are left
out for testing the classification algorithm. In double cross-
validation, the data is divided into two groups, a training
set and a test set, and the training set is then subdivided
into a learning set and a validation set. The validation set is
used for testing how well the classifier performs after being
trained on the learning set, including testing for over-fitting
of the algorithm. Once the classifier is fully optimized with
the learning and validation sets via v-fold cross-validation, it
is applied to the test set to assess final performance.

Fig. 4. Power spectrum of preictal and interictal windows broken into 9
frequency bands for comparison

3323



(a) Weighting = 5 (b) Weighting = 10 (c) Weighting = 50

Fig. 5. CSVM classification as a function of weighting: (a) Top two principal components of the 54 features from EEG are plotted for each window of
data. Blue X’s represent interictal windows; red dots do preictal windows. Are that is classified above a certain threshold is colored by green. At 5 times
relative weighting of preictal over interictal, a small region of positives are selected. Most preictal windows are missed and only a few false positives are
detected. (b) As relative weighting increases to 10, the green region above threshold expands capturing more preictal points but less interictal ones, leading
to higher sensitivity but lower specificity. (c) As weighting increases even greater, most of the preictal are classified but the problem of over-fitting may
occur.

E. Classification

CSVM in the package of LIBSVM [10] was used. The
SVM was optimized for each patient using the following
parameters:

1) The misclassification cost
2) The relative weights of interictal to preictal windows.

Effects of weighting are illustrated in Fig. 5.
3) Polynomial kernel order 2, 3, and 4

Five-fold cross validation was performed with the training
set. Each classification model is built with the learning set
to minimize the following cost function:

1
2

∥∥ω∥∥2 + C+
∑

i∈+class

ξi + C−
∑

j∈−class

ξj

where 1
‖ω‖2 is the margin, distance between the support

vectors and the decision boundary, ξi and ξj are slack
variables, and C+ and C− are misclassification costs for
false negatives and false positives, respectively. Then, once
optimized through the above process, the classifier was
applied with the test set, generating (predicting) the label
for the unknown dataset.

Points may be misclassified for several reasons. One
cause may be that the results are noisy and therefore the
classification will be wrong for some points. Another reason
may be that the EEG is truly preictal but the seizure was
somehow avoided. Our operational definition of preictal
is that it immediately precedes the seizure; this neglects
other windows of similar behavior that may be preictal.
Therefore, it is required to separate windows that may have
been spuriously misclassified from windows that show true
preictal behaviors.

F. Postprocessing

For postprocessing, k-of-n analysis was performed as
follows: each window is predicted as positive or negative,
with respect to predicting an impending seizure. If there
are equal to or more than k positives out of n consecutive
windows, then the prediction horizon following the event is

considered preictal; otherwise, it is labeled as interictal (see
Fig. 6). As postprocessing in the proposed algorithm, 3-of-5
analysis was used to identify the prediction horizon of five
minutes prior to a seizure. The reason to choose a five-minute

(a) 3-of-5 analysis

(b) Effect of 3-of-5 analysis

Fig. 6. Postprocessed data: (a) Each window is classified as positive or
negative. A 3-of-5 analysis requires at least 3 windows of 5 to be positive
to classify the entire next 5 minutes of data as positive. (b) 3-of-5 analysis
applied to data results. Five minutes of preictal windows are plotted fooled
by approximately 45 minutes of interictal. A few interictal datasets are
misclassified, however they are sparse and do not reach 3-of-5 significance
cutoff. After post-processing, no false positives are detected and preictal
windows are correctly labeled due to the much higher density of positives.
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prediction horizon is that it is long enough for patients to
prepare for impending seizures but is still specific enough in
time to be useful for drug administration or depth-electrode
stimulation.

III. RESULTS

Sensitivity ( TP
TP+FN ) and the rate of false positives per

hour have been measured to estimate how successfully the
proposed algorithm works. Sensitivity measures how many of
all the seizure occurrences a prediction model can recognize
as such, and false positive rate indicates how many false
alarms occur in an hour. From the EEG dataset of 9 patients
with 45 seizures and 219-hour-long interictal signals, a con-
ventional SVM classified 56% of the preictal correctly, using
the features of spectral power in 9 bands. By optimizing the
weights by increasing the preictal data’s importance to 32 to
64 times that of interictal and by postprocessing of 3-of-5
analysis, the proposed algorithm predicted 35 of 45 seizures,
resulting in sensitivity rate of 77.8% (ranging from 2 of 5
seizures in 1 patient and 4 of 5 or better in 6 patients) with
no false positives, as shown in Table I.

IV. DISCUSSION

High sensitivity of nearly 80% and no false positive
suggest that spectral power in several bands, which are linear
features, may be one of the correct features for seizure
prediction and that CSVM and k-of-n analysis, which work in
the non-linear fashion, may perform as an effective classifier
for seizures. From the perspective of building an implantable
device, the above fact is attractive, for it demonstrates that
prediction can be performed with linear features by non-
linear classifiers. Once the part of the non-linear classifier
in the implantable device is optimized, whose process may
be computationally intensive but can be achieved offline, the
implantable device can be designed to consume less power,
for it operates based on linear features.

Several other studies for developing seizure prediction
methods have been tested on these exact same Freiburg
EEG datasets [11], but our results demonstrate a signifi-
cant improvement over previous reports for the following
reasons. First, we have achieved significant sensitivity and
specificity with just a 5-minute-long prediction horizon. In
general, algorithms that use short prediction horizons usually
produce low sensitivity less than 60% [12] or high false-
positive rates around 1 per hour [13]. Other algorithms that
yield somehow comparable sensitivity use windows of 30
minutes or longer [14][15][16], but they require significantly
more computation time and result in much longer, and less
temporally specific, prediction windows. Second, we used
the method of double cross-validation in order to test our
algorithm which is optimized with the training set only. Most
of the previous studies with high sensitivity and specificity
were not evaluated via double cross-validation [11]: they
were simply trained and tested their data on the exact same
dataset. Some of the previous works might represent better
results than ours, but should be treated differently from ours,

TABLE I
OUTCOMES FROM SEIZURE PREDICTION ANALYSIS

Patient No. Sensitivity (%) FP/Hour Poly deg.
3 80.0 0.0 2,3,4
4 80.0 0.0 2,3,4
5 60.0 0.0 3,4
10 100.0 0.0 2,3,4
16 60.0 0.0 2,3,4
17 100.0 0.0 2,4
18 100.0 0.0 2,3,4
20 40.0 0.0 2,3
21 80.0 0.0 2,3,4

Average 77.8 0.0

for prediction requires processing data that has not been
recorded yet.

V. CONCLUSION

A patient-specific algorithm for seizure prediction based
on EEG recordings is proposed. This algorithm extracts
spectral power in nine bands and classifies preictal and
interictal using CSVM classification and k-of-n analysis.
Applied to 9 patients’ recordings from the Freiburg EEG
database via double-cross validation, the proposed algorithm
resulted in the average sensitivity of approximately 80% with
zero false positive.
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