
ABSTRACT
Functional electrical stimulation (FES) can restore 

volitional motion of patients with neurological injuries or 
diseases using electrical stimulation of nerves innervating 
the muscles to be controlled independently. The Flat 
interface nerve electrode (FINE) enables the selective 
control of different muscles at the same time. In addition, 
multiple contact electrode designs allow selective recording 
of the various signals within the cuff. However, motion 
control of neuromuscular skeletal systems using multi-
contact electrodes is a challenging problem due to the 
complexities of the systems and the large number of 
channels required to activate the various muscles involved 
in the motion. The localization and the recovery of many 
signals pose a significant challenge to the low signals to 
noise ratio and the large number of fascicles. Using 
computer models of the peripheral nerve, we have tested the 
ability of various algorithms to control the neuromuscular 
skeletal dynamics. Computer models have also been used to 
develop new methods to recover fascicular signals within 
the nerve. Both the control and the detection algorithms are 
currently being tested experimentally and preliminary 
results are included. The goal of this study is to develop the 
ability to detect nerve signals and use these signals to 
control joint motion in patients with stroke, amputation or 
paralysis. 
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I.  INTRODUCTION 
 

Patients with stroke can have severe neurological deficits  
caused by complex combinations of intact and disable 
functions. For patients with unilateral stroke, signals on the 
uninjured side could be used to restore function on the 
injured side. Similarly, patients with spinal injury still have 
many sensory signals that do not reach the brain but could 
still be used to control a neural prosthesis. Moreover, the 
nerve and muscles can still be activated. Patients with 
amputated limbs also have neural signals that could be used 
to control an artificial limb. In order to take advantage of 
these signals, it is important to develop systems that can 
interface with peripheral nerves to detect physiological 
signals and used by the patients to allow a natural control of 
the restored function.  

However, developing motion control algorithm for FES 
is a challenging problem due to inherent complexities of 
musculoskeletal systems including highly nonlinear,  
strongly coupled, time-varying, time-delayed, and redundant 
properties [1].  Musculoskeletal systems are redundant since 

the number of muscles acting on a joint motion is larger than 
the degrees of freedom of the joint. Although this 
redundancy enables the dexterity in human motor control, it 
causes difficulty in finding an inverse model of many-to-one 
system for control purpose [2]. 

The Flat Interface Electrode [3] has been developed to 
place electrical contacts close to the fascicles and allows 
both selective recording of neural signals and stimulation of  
specific fascicles. The signals can be amplified and 
processed to control limb motion as shown in Figure 1.  

 
Figure 1: Detection and control of neural activity in 
peripheral nerves.                   
 
METHODOLOGY:  
NERVE MODEL: Finite element model (FEM) of the 
human sciatic nerve including several fascicles, many 
electrode contacts are used to simulate the nerve-cuff 
interface voltage distribution along the axons inside the 
fascicles. Computer simulations of the axonal dynamics are 
used to determine whether each axon will fire or not 
depending on the extracellular voltage distribution. 
Similarly, action potential propagation is simulated and 
generates to calculate the voltage at each contact. 

 
Figure 2: Realistic nerve cross section. 
 
DETECTION OF SIGNALS: The localization and detection 
of electromagnetic sources are often solved using Inverse 
Problem technique [4] However, these techniques require 
model accuracy and signal-to-noise ratios (SNR) difficult to 
achieve in biological situations. In particular, the reliable 
recovery of fascicular sources from whole nerve recordings 
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has presented an unsolved problem. These methods required 
close initial guesses for convergence and are rather slow. 
We have used a beamforming algorithm  based on antenna 
array design [5]. The algorithm is based on a priori 
knowledge of the cuff geometry (a priori Finite Element 
Model). It was tested on a realistic nerve model with 
anisotropic conductances (realistic Finite Element Model) 
and with a large population of concurrently active axons in 
10 fascicles. Moreover, no assumptions on signal 
independence were required.  
 
BEAMFORMING ALGORITHM: 
 A finite element model of an insulating cuff electrode, 
homogeneous nerve, and large saline volume conductor was 
created in MAXWELL 3D (Ansoft Corp.). Simulations are 
used to create a lead-field, or sensitivity matrix, giving the 
sensitivity of each contact to a source each pixel in a cross-
section of the nerve. Since the system is linear and 
superposition applies, linear combinations of these 
sensitivities can be used to create new “virtual contacts” 
which approximate a desired sensitivity vector simply by 
solving a well-conditioned, over-determined system. The 
coefficients of these new measurements form the 
transformation matrix which transforms the observation to 
an activity estimate for each pixel [6].  
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Figure 3: Musculoskeletal model 
 
 
SIMM and SD/FAST are used for modeling and simulation 
of a 2-DOF joint system. There are eight muscles in this 
model: Medial gastrocnemius (MG), Lateral gastrocnemius 
(LG), Soleus(Sol), Tibialis anterior (TA), Tibialis posterior  
(TP), Peroneus brevis (PB), Peroneus longus (PL), Peroneus 
tertius (PT). The muscle activation dynamics are modeled 
with fourth order differential equation.  
 
CONTROL METHODOLOGY 
A human computational ankle-subtalar joint model with 
eight Hill-type muscles modified from a lower extremity 

SIMM model was used for the simulation [3]. The proposed 
controller is composed of three parts: inverse steady state 
controller (ISSC), feedback controller and feedforward 
controller (Figure 4). By placing the inverse steady state 
controller in front of the neuromuscular system, the 
redundancy problem can be solved. ISSC is obtained by trial 
and error using linear interpolation or extrapolation of three 
pre-obtained  

Figure 4: Block diagram of the proposed controller 
structure.  ISSC is the inverse steady state controller.
 

III RESULTS 

Modelling Results: Fascicle localization 
A propagating source simulating realistic neural signals 
made by summing a fixed density of randomly delayed 
action potentials (figure 5 top) over a 100ms window of 
activity [6]. 

  
Figure 5: Localization of fascicles within the nerve. 
 
The signal power (RMS) at each contact was calculated in 
10ms bins, and the beamforming localization procedure was 
applied to each one (Figure 5) and the mean of the resulting 
list of sources found.  This estimated location (green cross, 
Figure 5) was then compared to the known location (red 
square) and overlaid onto the fascicle map of the nerve for 
reference. The estimated sources are found to be well within 
the correct fascicle. When used to recover fascicular 
activities from simulated nerve cuff recordings in a realistic 
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human femoral nerve model, this beamforming algorithm 
separates signals as close as 1.5mm with cross-correlation 
coefficient, R>0.9 (10% noise). Once the localization is 
known, simultaneous signals could be recovered from 
individual fascicles with only a 20% decrease in cross 
correlation compared to a single signal.  At high noise levels 
(40%), sources were localized to within 180μm in the 
12x3mm cuff.  Localizing sources and using the resulting 
positions in the recovery algorithm yielded R=0.66±0.10 in 
10% noise for 5 simultaneous muscle-activation signals 
from synergistic fascicles. 
 
Preliminary Experimental Tests of Localization 
Recordings were obtained from the proximal main sciatic 
trunk of rabbits while stimulating the distal peroneal and 
tibial branches. Compound action potentials (CAPs) were 
recorded from spatially distinct areas in the main trunk.  The 
beamforming algorithm was applied to recordings of all 16 
contacts at the peak of the CAP.  The resulting images from 
each source were compared against each other and against 
other images from stimulation artifact and background 
noise. 

 
Figure 6: Fascicle locaization from tibial excitation (top) 
and peroneal excitation (bottom). 
 
In 10 randomly selected CAP peaks from a 30 second 
segment of stimulation activity in one branch, the local 
maxima suggested the source was located at 4.40±0.02mm 
from the medial edge of the cuff, and 0.36±0.01mm from 
the dorsal row of contacts.  Thus, the images each show a 
focal, roughly circular source at a distinct spatial position in 
the nerve cross-section (figure 6).  Histological analysis will 
be used to validate that these locations correspond to the 
position of the fascicles belonging to the branch stimulated. 

Motion control of ankle-subtalar joint systems using flat 
interface nerve electrode on the sciatic nerve 

A FINE with 20 contacts was placed on the sciatic nerve 
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Figure 7: Computer simulations compared the desired and 
actual trajectory in a 2-degree dynamic model of the ankle. 
 
model with fascicular distribution assigned based on 
anatomical data. In additional to sinusoidal, pseudo-random 
noise signal was used to test the controller. The results in 
figure 7 show that both the control system can track the 
system output trajectories that match the reference 
trajectories within 3% RMS errors for both 
dorsiflexion/plantar flexion and inversion/eversion [7]. 
  
Preliminary Experimental Tests of Controller 
A 14 contact FINE was placed on the sciatic nerve of rabbits 
proximal to branching point of tibial and common fibular 
nerves. The knee joint was fixed and the ankle joint angle 
measured with an encoder. A charge balanced biphasic 
cathodic first stimulation was applied to the contacts. Each 
phase had a pulse width of 50 us and the time delay between 
consecutive channels was 200 us. The stimulation frequency 
was set to 33Hz, and the pulse amplitude for each contact 
was modulated. A-M Systems 2200 analog stimulus isolator 
was used to convert voltage waveform from PC to 
corresponding current, and two analog multiplexers, 
MAX308 from MAXIM are used to distribute the current to 
each of 14 contacts of FINE. The results of the proposed 
controller for the sinusoidal reference trajectories are shown 
in figure 8. The RMS errors for 0.5 Hz and 1.0 Hz are 1.2 
and 1.4 degrees respectively.  
 

CONCLUSIONS 
At physiological noise levels, the beamforming section of 
the algorithm separates signals as close as 1.5mm with 
R>0.9.  This distance is comparable to the average fascicular 
diameter in this nerve of approximately 1mm.  Thus, these 
simulations suggest that the beamforming algorithm alone is 
able to reconstruct fascicular-level activity. Preliminary 
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experiments applied to the compound action potentials have 
shown that is possible to recover signals within the nerve 
selectively. These signals could be used for control joint 
movement. Computer simulations show that a control 
algorithm that separates the dynamic from the steady state is 
clearly capable of choosing correctly the contacts and apply 
the correct amplitude to a multiple contact nerve electrode 
for motion control. Preliminary experiments confirm that the 
this control procedure can indeed produce real time ankle 
motion. 
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Figure 8: Experimental control of the ankle joint movement. 
Desired and actual trajectory are shown. 
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