
  

  

Abstract—Neurons transform a series of presynaptic spikes 
into a series of postsynaptic spikes through a number of 
nonlinear mechanisms.  A nonlinear model with a dynamical 
threshold was built using a Volterra Laguerre kernel method to 
characterize the spike train to spike train transformations of 
hippocampal CA1 pyramidal neurons.  Inputs of the model were 
broadband Poisson random impulse trains with a 2 Hz mean 
frequency, and outputs of the model were the corresponding 
evoked post-synaptic potential (PSP) and spike train data 
recorded from CA1 cell bodies using a whole-cell recording 
technique.  The model consists of four major components, i.e., 
feedforward kernels representing the transformation of 
presynaptic spikes to PSPs; a dynamical threshold kernel 
determining threshold value based on output 
inter-spike-intervals (ISIs); a spike detector; and a feedback 
kernel representing the spike-triggered after-potentials.  

I. INTRODUCTION 
eurons receive presynaptic spike trains and transform 
them into postsynaptic spike trains. All cognitive 

functions such as perception, language, emotion, learning, 
and memory are embedded in neuron spike train to spike train 
temporal pattern transformations. It is important to 
understand the neuron transformations as well as to 
computationally reproduce the output patterns given the input 
patterns [1].  

 The nonlinear dynamical single neuron modeling based on 
Volterra kernels appears to be important in two ways. First, it 
captures the neuron nonlinear transformations based on 
neuron input-output relationships without the bias of partial 
knowledge. Bias of partial knowledge is almost unavoidable 
in compartmental modeling by nature [2]. Second, the model 
developed in this report provide real time prediction. This 
computational efficiency is important for future development 
of large scale simulations. 
 The inputs of the model used in this report are Poisson 
random interval spike trains sent to Schaffer collaterals, one 
of the major afferents to CA1 pyramidal  neurons. The 
Poisson random interval stimulation trains with 2Hz mean 
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frequency include the majority of spike train patterns 
observed in behaving rats, and can induce physiologically 
plausible nonlinearities. The outputs of the model are 
whole-cell recordings of CA1 pyramidal neurons. Whole-cell 
recordings enable us to access detailed sub-threshold PSPs 
reflecting the characterization of sub-threshold nonlinearities, 
and detailed action potential waveforms reflecting active 
conductances originated from multiple sources, allowing 
threshold measurements of each individual action potential. 
 Like many other neurons in the CNS, hippocampal CA1 
pyramidal neurons receive tens of thousands of excitatory 
synaptic contacts over their dendritic arborizations.  Many 
single neuron processes are nonlinear, such as presynaptic 
neurotransmitter releasing, postsynaptic dendritic 
integrations, somatic integrations, and spike generations [3, 
4].   
The up to 3rd order feedforward Volterra kernels in the model 
developed in this report characterized the nonlinear 
transformation from presynaptic spikes to  pre-threshold 
PSPs.  Once the pre-threshold PSPs are over the threshold, 
the action potentials are induced.  Threshold has generally 
been taken for granted to be a constant.  However, taken the 
evidence from literature and our data, we like to argue that 
threshold is not a constant and it is important to include 
threshold dynamics to produce accurate spike predictions.  In 
2001, Henze and Buzsáki proposed and applied third 
derivative method to measure the threshold of each action 
potential of in vivo intracellularly recorded data.  They 
showed that there was inverse relationships between the 
length of the inter-spike-intervals (ISIs) and amplitudes of 
thresholds: the shorter the ISI, the higher the threshold 
amplitudes.  This phenomena has also been confirmed in this 
report using the same measuring method and CA1 whole-cell 
recording data, which will be described in detail in the 
methods section.  To address that issue, we built a third-order 
nonlinear threshold model in addition to the previously 
developed model structure to characterize threshold 
dynamical behaviors and to improve spike prediction 
accuracy [5].    

II. MATERIALS AND METHODS 

A. Electrophysiology 
Hippocampal slices were prepared from male, juvenile 

Sprague-Dawley rats (14-21 days of age).  Animals first were 
anesthetized with 5% halothane, and then were decapitated 
and the hippocampi were rapidly dissected. Both hippocampi 
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were sectioned into blocks while being washed with cold, 
oxygenated medium.  Slices of tissue (400 microns thick) 
then were cut perpendicular to the longitudinal axis using a 
vibratome.  Slices were incubated with medium consisting of 
(in mM): 128 NaCl; 2.5 KCl; 1.25 NaH2PO4; 26 NaHCO3; 10 
Glucose; 1 MgSO4, 2 Ascorbic Acid, and 1 CaCl2 with pH 7.4 
and 295 mOsmol.  Based on visible and consistent anatomical 
boundaries, a bipolar nichrome stimulating electrode was 
placed so as to activate Schaffer collaterals (Fig. 1a and b), a 
major excitatory afferent to CA1 pyramidal cells.  PSPs were 
consistently evoked by Poisson random impulse train 
stimulation with 2Hz mean frequency and recorded with 
whole-cell recording process with glass tip resistances of 
approximately 4MΩ (Fig. 1a and c) and internal solution (in 
mM): 110 Potassium-Gluconate, 10 HEPES, 1 EGTA, 20 
KCl, 4 NaCl, 2 Mg-ATP, and 0.25 Na3-GTP with pH 7.3, 290 
mOsmol.   

 

 
Figure 1.  Hippocampus slice anatomy and experimental paradigm (a).  
Picture showing relative position of stimulation electrode and recording 
electrode with respect to the CA1 region of the hippocampal slice (b).  Low 
magnification photomicrograph (40x) showing stimulating electrode in the s. 
radiatum of the CA1, and a fine glass micropipette approaching the pyramidal 
cell layer.  High magnification photomicrograph (400x) showing recording 
electrode patching onto CA1 pyramidal cell soma (c).  

B. Threshold Dynamics 
 1) Threshold Measurement: 
 Many different threshold measuring methods have been 
suggested [6]. In this report, we applied the method proposed 
by Henze and Buzsáki in 2001.  They suggested that 
thresholds are the voltage values of the PSPs corresponding 
to the first peak of 3rd derivatives of PSPs [7]. Please see 
Figure 2. The third derivative equation is expressed as 
following, 
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This estimation is derived from Taylor series expansions to 
be accurate to O(∆t4) [8]. 
 

 
Figure 2.  Threshold measuring process. The voltage value of PSP 
corresponding to the first peak of 3rd derivative of PSP is calculated to be the 
threshold. 
 
 2) Threshold vs. Inter-Spike-Interval: 
 Plotting the threshold analysis from our data shows that 
shorter inter-spike-interval are associated with increased 
spike thresholds.  Please see Figure 3. 
 

 
Figure 3.  Threshold value vs. inter-spike-interval. 

C. Laguerre Volterra Modeling 
The overall model structure is shown in Figure 4, and 

represents an extension of a model first proposed by Dong et 
al., 2007 [3].  The model consist three Volterra kernels and a 
spike detector. 

 

 
Figure 4.  Model structure.   
 
In Figure 4, 
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where, x is the presynaptic stimulation train as well as input of 
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the feedforward kernel; u represents pre-threshold PSPs as 
well as the feedforward kernel output; w is the summation of 
u and a; y represents the somatic PSPs and spike train as well 
as the overall model output; yh represents the extracted spike 
information from y; and a represents the spike triggered after 
potential contributions. 
 1) Feedforward Kernels: 

The feedforward pre-threshold PSPs, u, were expressed 
with the Laguerre Volterra method in the following way, 
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In the equation, L denotes the number of Laguerre basis 
functions; 

0kc ,
1kc ,

2kc , and
3kc  are the open parameters for the 

feedforward kernels k0, k1, k2, and k3 that were optimized with 
least square estimation; Mk is memory window; and ( )k

jv t  is 

the convolution of Laguerre basis functions of feedforward 
kernels k

jb  and input x(t). 

 2) Feedback Kernels: 
The spike triggered feedback contribution a(t) could be 

expressed in the following way, 
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where, ch represent open parameters of feedback kernel H; 
Mh is memory window; ( )h

jv t  is the convolution of Laguerre 

basis functions of feedback kernels h
jb  and output spike train 

yh. The expression of yh is as follows, 
 1    ,  is action potential

0    , 
y

yh
y w

⎧
= ⎨ =⎩

        (8) 

 3) Threshold Kernels: 
The threshold θ in Figure 4 is expressed as following,  
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in which, n is the numerical sequence of input pulses, x;  
tn is the time corresponding n-th input in x; m is time lag 
within memory window; Mθ is the memory window size. 

( )jv nθ  is the convolution of Laguerre basis functions of 

dynamic threshold kernels h
jb  and output spike train yh. 

Thresholds are scalars not like PSPs are 2D waveforms. This 

makes threshold kernels one order lower than PSPs 
feedforward and/or feedback kernels.  

D. Kernel Constructions 
Volterra kernels were reconstructed with the optimized 

Laguerre coefficients ck, ch, and cθ in the following way, 
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For electrophysiological interpretations of Volterra kernels 
please see result section and Song, 2009 [2].  
 

E. Model Evaluations 
Normalized mean square error (NMSE) was used to 

evaluate the PSPs waveform prediction, which is expressed 
as following,  

 2 2
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where y(n) represent recorded data, t(n) represent prediction 
data. 
 Spike prediction error rate (SPER) was applied to evaluate 
spike prediction accuracy, defined as following, 

 Numbers of False Positive + Numbers of True NegativeSPER=
Total Number of Stimulations

  (16) 

 

III. RESULT 

A. Prediction Result with a Constant Threshold 
Sample clips of data set of CA1 pyramidal cell whole-cell 

recorded original PSPs and model predicted PSPs with 
constant threshold are shown in Figure 5. 
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Figure 5. Sample data of whole-cell PSPs recording and out-sample 
prediction. Sample clip that the prediction accurately match the recording (a). 
Sample clip that produce false-positive spike prediction (b). 
 

The prediction with constant threshold was done in two 
steps.  First, the optimized open parameters of feedforward 
and feedback kernels were trained simultaneously to produce 
the minimum normalized mean square error (NMSE).  
Second, receiver operating curve (ROC) were used to find an 
optimal constant threshold.  

As shown in Figure 5b, the model predictions produce 
some false-positive prediction error. It was exactly this kind 
of imperfect spike prediction that inspired us to construct a 
dynamic threshold model.  

B. Feedforward and Feedback Kernels  
Up to third order feedforward kernels and one first-order 

feedback kernel are shown in Figure 6. 
 

 
Figure 6. Feedforward and feedback kernels. First order feedforward kernel 
(A). Second order feedforward kernel (B). Third order feedforward kernel 
(C). Feedback kernel (D).  
 

Mathematically, the first order feedforward kernel (Figure 
6a) works as a linear filter and could be viewed as the impulse 
response of the neuron PSPs.  Physiologically, the first order 
kernel describes the neuron response to an isolated 
stimulation.  

In the case of multiple stimulations, on top of first order 
feedforward kernel, the second order kernel (Figure 6b) 
describes the nonlinear dynamics of how, within the memory 
window, a previous single stimulation affects the current 
output. The second response will be the summation of first 
order kernel and second order kernel given the right 
stimulation interval I1.  Up from second order kernel, time or 
use dependent nonlinearity is introduced. 

Similar to second order kernel, third order kernel (Figure 
6c) shows how two combined previous stimulations together, 
within the memory window, affect the response of current 
stimulation.  In the up to 3rd order model, the response for 
current stimulation is the total sum of first order kernel of the 
current stimulation itself, second order kernel contributed by 
each of the previous stimulations, and third order kernel 
contributed by the each of the paring combinations of 

previous stimulations. 
Feedback kernel describes the spike triggered after 

potential contribution (Figure 6d). 

C. Dynamical Threshold Kernels 
The reconstructed threshold kernels are shown in Figure 7. 

 
Figure 7. Dynamic threshold kernels. First order threshold kernel (a). Second 
order threshold kernel (b). Third order threshold kernel (c).   
 

Thresholds are values, not like PSPs are two dimensional 
waveforms. So, the first order threshold kernel is a scalar as  
shown in Figure 7a. We name the order of kernels according 
to how many inputs are considered instead of the dimension 
of convolutions. Physiologically, first order kernel is the 
expected threshold value to an isolated stimulation. Second 
order threshold kernel, shown in Figure 7b, represent the 
effect of previous spike on current response. The second 
order threshold kernel shows that if the inter-spike-interval is 
shorter then 100 mS, the threshold for current response will 
be much higher than previous spike. In a similar sense, third 
order threshold kernel, shown in Figure 7c, describes the 
effect of every pair of previous spike on current response. 

The result of threshold prediction is shown in Figure 8. 
 

 
Figure 8. Threshold predictions. Measured thresholds from recorded data 
(upper panel). Model predicted thresholds (lower panel).    

IV. DISCUSSION 
Originally, we build our model without the dynamic 

threshold kernels. Statistical analysis of the prediction 
performance were evaluated in two ways: 1) normalized 
mean square error (NMSE), comparing the error between 
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recorded and predicted pre-threshold PSPs; 2) spike 
prediction error rate (SPER), which is the total number of 
false-positive and true-negative in spike predictions over the 
total numbers of presynaptic stimulations.  The average 
performance of NMSE and SPER over 16 cells from different 
animals were both close to 20% (data not shown).  The 
intention to improve the SPER motivated the idea of building 
a dynamical threshold.  As shown in the result section, the 
model has been constructed. However, we have not 
integrated the dynamic threshold thoroughly into the model to 
perform iterative real time prediction as we did with constant 
threshold.  The work is still under construction.    

In summary, our model, which is the first of the kind, 
characterizes the nonlinearity of  sub-threshold PSPs and 
threshold dynamics of single neurons.  Hence, our model has 
broad implications not only in engineering but also in 
neuroscience.  
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