
  

  

Abstract— While the growth factors and cytokines known to 
influence angiogenesis and vasculogenesis have garnered wide-
spread attention, less is known about how the mechanical 
environment affects blood vessel formation and cell assembly.  
In this study, we investigate the relationship between substrate 
elasticity, endothelial cell-cell connectivity and traction force 
generation.  We find that on more compliant substrates, 
endothelial cells self-assemble into network-like structures 
independently of additional exogenous growth factors or 
cytokines.  These networks form from the assembly of sub-
confluent endothelial cells on compliant (E=200-1000Pa) 
substrates, and results from both the proliferation and 
migration of endothelial cells.   Interestingly, stabilization of 
these cell-cell connections and networks requires fibronectin 
polymerization.  Traction Force Microscopy measurements 
indicate that individual endothelial cells on compliant 
substrates exert forces which create substrate stains that 
propagate from the cell edge.  We speculate that these strains 
draw the cells together and initiate self-assembly.   Notably, 
endothelial cell network formation on compliant substrates is 
dynamic and transient; as cell number and substrate strains 
increase, the networks fill in through collective cell movements 
from the network edges.  Our results indicate that network 
formation is mediated in part by substrate mechanics and that 
cellular traction force may promote cell-cell assembly by 
directing cell migration. 

 
 

 
INTRODUCTION 

URING angiogenesis and vasculogensis, endothelial 
cells, the cells which form the inner lumen of blood 

vessels, integrate cues from their microenvironrment to  
organize and form new vasculature.  Understanding the cues 
and forces which regulate capillary formation is critical to 
developing successful vascular tissue engineering strategies.  
Additionally, elucidating the microenvironmental cues 
which affect angiogenesis will also aid in the development 
of therapeutics to prevent angiogenesis in pathological 
conditions including tumor formation [1]. 

Much attention has been paid to the growth factors, like 
vascular endothelial growth factor (VEGF) [2], and the 
extracellular matrix density and composition [3] that induce 
endothelial cell migration, proliferation and differentiation.  
However, only limited research has been done to understand 
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the mechanical forces that affect capillary formation.   
There is recent evidence to suggest that mechanical forces 

can play a key role during vasculogenesis and angiogenesis.  
Both shear stress and strain influence cell proliferation, 
migration and directionality of forming sprouts [4-6].   
Interestingly, cyclic strain can induce network formation 
through a Notch pathway linked to Tie1 and Tie2, a critical 
pathways linked with vasculogenesis in development [7].  
While the full landscape of mechanical forces which affect 
the development of vasculature is still being described, it is 
apparent that endothelial cells and the process of blood 
vessel formation are mechanosenstive. 

Changes in substrate elasticity have emerged over the last 
decade as a critical mechanical regulator of cell behavior 
across many physiological systems.  It has been shown that 
matrix stiffness can promote stem cell differentiation [8], 
vascular smooth muscle cell migration [9], osteogenesis[10], 
neuron growth[11] and malignancy[12].  We have 
previously shown that matrix stiffness is also a critical 
regulator of endothelial cell connectivity.   Endothelial cells 
on more compliant substrates connect in elongated 
structures, whereas on stiffer substrates,  cells tend to remain 
well-spread without the formation of significant cell-cell 
connections [13].   Our previous data also suggests that 
endothelial cells use traction forces to communicate 
mechanically through their substrate; on sufficiently 
compliant substrates, strains created in the substrate cause 
cells to migrate towards each other to form cell-cell 
connections [14].  Interestingly, data from others suggests 
that matrix stiffness promotes less well-formed cell-cell 
junctions and increased capillary leakiness [1]. These results 
indicate that matrix stiffness is an important design 
consideration when engineering materials for vascular tissue 
engineering.   

In this study, we probe further into the mechanisms by 
which endothelial cells self-assemble into vascular 
structures.  We find that isolated cells on compliant 
substrates tend to be more elongated than cells on stiff 
substrates and forces of these endothelial cells tend to be 
highest at the cell ends.  We believe it is these forces that 
drive cells together, and the reorganization of fibronectin 
between connecting cells stabilizes these contacts.  Notably 
these network structures are transient. Over time, cells 
within these structures proliferate and monolayers are 
formed due to collective cell movement at the network 
edges. 
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I. MATERIALS AND METHOD

A. Cell culture 
Bovine aortic endothelial cells are cultured a
previously in a DMEM based media supplem
FBS. The cells are typically used between p
12. 

B. Substrate Fabrication 
Polyacrylamide substrates are fabricated as 
described[13],  where substrate stiffness is a
1000 Pa and 10,000Pa by adjusting the ratio
bis-acrylamide. Polyacryamide gels are cov
glutaraldehyde-activated glass coverslips. T
(BD Biosciences) is covalently bound to the
using a bi-functional linker synthesized in o
to the protocol of Pless et al [15]. 

C. Traction Force Measurements 
Cellular traction stresses are calculated base
displacements created in the substrate [16, 1
strains are detected based on movements of 
fluorescent beads embedded in the polyacry
substrate[18].  The substrate strains are conv
stresses using the LIBTRC analysis library d
Professor Micah Dembo of the Boston Univ
invented the basic theory that underlies tract
microscopy. 

II. RESULTS 

A. Soft substrates facilitate endothelial ce
assembly 

To investigate how substrate stiffness affect
adhesion, we fabricated deformable polyacr
substrates of varying compliance.  As depic
on more compliant substrates (E=200), cells

Figure 1. Endothelial cells plated on compliant 
and stiff (E= 10,000 Pa) substrates. Scale bars
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Recent data acquired in 3D angiogen
that network formation is stabilized 
polymerization along the length of th
explored this same mechanism in the
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B. Endothelial cells are driven to
(>400microns) distances. 

Time lapse microscopy of network f
substrates revealed several interestin
depicted in Figure 3, is that cells on 
connect over large distances. As sho
formation of connections is initiated
endothelial cells migrate from a give
Interestingly, cells that are several h
away from each other initiate this be
move towards each other.  Over time
and elongate towards the opposing c
depicted in Figure 3, the cells have c
micron gap.   The second finding of 
induced on compliant substrates are 
endothelial cells continue to prolifer
migrate from the network edges inw

C. Endothelial cell traction force
substrates 

Our previous data indicates that cell
against their substrate, and adjacent 
displacements created by traction fo

Figure 2. Co-localization of fibronectin fib
cell network-like structures on compliant (E
are stained with DAPI (blue) and actin cyto
Scale bars equals 50 microns. 
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migrating towards each other [14].  To unde
mechanism by which endothelial cells conn
on compliant substrates, we speculated that 
in the substrate due to cellular tractions may
migration and connectivity. To address this 
measured the forces that cells exert on these
metric of the ability of cells to sense adjacen
substrate tension.  We found that cells on m
substrates (E=200-1000Pa) are typically mo
exert forces concentrated at the ends of the c
major axis (Figure 4).  The average value of
approximately 0.196 +/- 0.030 (SEM) μN, w
decreased compared to the values we have p
for endothelial cells on substrates of 2500Pa
networks do not form.  We believe that this 
may aid in drawing the cells together to form

Figure 3. Time lapse images of endothelial cell connec
point to endothelial cells that connect over time. Scale 
microns. 

Figure 4: Typical color contour traction map of an en
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