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Abstract— Spinal cord injury (SCI) results in deficits of
sensory, motor and autonomous functions, with tremendous
consequences for the patients. The loss of motor functions,
especially grasping, leads to a dramatic decrease in quality of
life. With the help of neuroprostheses, the grasp function can
be substantially improved in cervical SCI patients. Nowadays,
systems for grasp restoration can only be used by patients with
preserved voluntary shoulder and elbow function. In patients
with lesions above the 5th vertebra, not only the voluntary
movements of the elbow are restricted, but also the overall
number of preserved movements available for control purposes
decreases. A Brain-Computer Interface (BCI) offers a method
to overcome this problem. This work gives an overview of the
Graz BCI used for the control of grasp neuroprostheses as
well as a new control method for combining grasp and elbow
function is introduced.

I. INTRODUCTION

The consequences of a spinal cord injury (SCI), which

results in a loss of sensory, motor and autonomous functions,

are tremendous for the patients. The loss of motor functions,

especially of grasping function, leads to a life-long depen-

dency on other persons and thereby to a dramatic decrease

in quality of life. With the help of so-called neuroprostheses,

systems based on functional electrical stimulation (FES), the

grasp function can be substantially improved. All established

FES systems for grasp restoration can only be used by pa-

tients with preserved voluntary shoulder and elbow function.

The limited possibilities for functional restoration in case of

extended paralysis as well as inexperienced controllers are

the main barriers for a broad use of neuroprosthetic systems

outside of research laboratories. Brain-Computer Interfaces

(BCI), systems which transform mentally induced changes

of brain signals into control signals [1], might serve as an

alternative human-machine interface. The ideal solution for

voluntary control of a neuroprosthesis would be to directly

record motor commands from the corresponding areas of the

cortex, convert these into control signals and transfer these

control signals to the neuroprosthesis itself, thereby realizing

a technical bypass around the interrupted nerve fiber tracts

in the spinal cord (Figure 1).

First attempts into the direction of EEG-based control

systems for restoration of the hand function were performed

by Pfurtscheller et al. [2] who described the control of a grasp

orthosis by motor imagery. Heasman et al. [3] reported on
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the control of a neuroprosthesis controlled with the alpha

rhythm modulated by opening and closing the eyes. The aim

of this paper is to give an overview of the collaboration work

of the Graz BCI group and the Heidelberg neuroprosthetics

group in this topic [4], [5], [6]. The use of different brain

switches used for control are demonstrated in more detail.

II. METHODOLOGY AND RESULTS

A. Neuroprostheses

In general, neuroprostheses for the upper extremity restore

with the use of electrical impulses lost control/motor- or

sensory functions of the body after lesions of the central

nervous system [7]. In case of restoration of motor functions,

the neuroprostheses deliver short current impulses eliciting

action potentials on the efferent nerves, which provoke

contractions of the innervated, yet paralyzed muscles. Here,

FES artificially compensates for the loss of voluntary muscle

activation. The easiest way of improving weak or lost grasp

function is the application of multi-channel electrical stimu-

lation with surface electrodes. Generally, the major advantage

of these non-invasive systems is that they can be offered to

patients at a very early stage of rehabilitation. Limitations

regarding selectivity, reproducibility and handling of these

systems can be overcome by implantable neuroprostheses,

where electrodes, cables and the electrical stimulator are

surgically placed under the skin (Freehand, [8]).

B. Brain-Computer Interface

Brain-Computer Interfaces are able to detect thought-

modulated changes in electrophysiological brain activity and

transform those signal characteristics into control signals.

One option for measurement of the brain signals is to place

electrodes on the scalp (electroencephalogram, EEG). One

common mental strategy to operate a BCI is imagination

of limb movements (motor imagery, MI). MI induces mea-

surable changes of oscillatory components in the ongo-

ing EEG over sensorimotor areas known as event-related

(de)synchronization (ERD, ERS, [9]). Independent from the

signal used, features have to be extracted and classified

to distinguish between different brain patterns. Very often,

training sessions have to be performed several times over

days or weeks to achieve a useful classification result [10].

C. BCI Control and Hand Function

The problem in high SCI patients (lesion above cervical

level C4) is that these patients lose control over their grasp

function and also their elbow function. In addition to these
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functional deficits, the ability to control external levers

or joysticks also decreases. Eye-tracking systems e.g., in

combination with a computer screen can be easily used for

spelling. In the case of a prosthesis control, the user has to

watch his moving arm; therefore, the use of an eye-tracker

is difficult in such a scenario.

To overcome the problems with reduced control possi-

bilities or controllers which are not appropriate for daily

activities, the use of a Brain-Computer Interface might be

a good solution. The ideal case would be to record motor

commands from the scalp and transfer the converted control

signals to the neuroprosthesis, realizing a bypass around the

interruption in the high spinal cord. A BCI in general is based

on the measurement of the electrical activity of the brain, in

case of EEG in the range of µV. In contrast, a neuroprosthesis

relies on the stimulation of nerves by artificial electrical

current pulses in the range of up to 40mA. One of the major

points in combining these two methods was to investigate

whether it is possible to realize an artefact free control system

by using a BCI.

Fig. 1. Principle of the BCI controlled neuroprosthesis. The BCI detects
brain patterns of motor intentions and feeds resulting control signals to the
neuroprosthesis.

Two SCI patients participated in a feasibility study (Fig-

ure 2, [6]). Both suffer from traumatic SCI below the 5th cer-

vical vertebrae and are therefore not able to grasp with their

hands and fingers. The EEG was recorded over sensorimotor

areas. Input features in both experiments were band power

time series. For classification, a linear classifier was used.

After training and classifier setup, the patients were able

to switch through a grasp sequence, which was generated

by a neuroprosthetic device controlled by imagination of

a dedicated movement. In case of patient A this was foot

MI (recorded from Cz) and in case of patient B it was left

hand MI (recorded from Cz and C4). A neuroprosthesis with

surface electrodes was set up for patient A such that a palmar

grasp pattern was achieved [4]. By flexion of the fingers,

small objects can be held between the fingers, thumb and

palm. The activation pattern of the muscles was divided into

the following four sequential grasp phases: (i) hand opening,

(ii) closing of fingers and thumb, (iii) opening of hand, (iv)

idling state, and (v) = (i). Patient B was provided with

an implantable neuroprosthesis, the Freehand-system. Two

basic grasp patterns (lateral grasp and palmar grasp) could

be generated with this system, from which the lateral grasp

pattern was chosen for the coupling with the BCI [5].

More details about the above described studies on estab-

lishing the brain switch can be found in [6].

Fig. 2. Patient A with BCI and neuroprosthesis based on surface electrodes
on the left hand (upper row) and patient B with implanted neuroprosthesis
in the right hand.

D. BCI Control and Hand & Elbow Function

The two case studies presented show clearly that a BCI can

be used as a control device for a neuroprosthesis. However,

controlling the hand grasp is not the final goal since patients

suffering from an SCI at level C4 have lost their voluntary

elbow movements and a limited shoulder control. Here, a

BCI would be more beneficial, and thus the restoration of

the elbow function also has to be taken into account. A BCI

provides only a reduced set of commands and is therefore

limited for control. In a basic study, a control method was

investigated were only one MI pattern was trained and used

for control of hand and elbow function of a robotic arm.

Ten healthy subjects (mean age 28.1 years, 4 female, 6

male) participated in a screening study. During screening

sessions, 3 types of MI (left hand, right hand, and foot)

had to be performed. By means of the Distinction Sensitive

Learning Vector Quantization (DSLVQ) algorithm [11], one

Laplacian channel and two best separating MI were selected.

After this screening, 3 subjects quit. The 7 remaining subjects

took part in the cue-based training, and 5 reached a classifi-

cation accuracy of about 80% in a two class paradigm (basket

game, [12]). During this training, they learned to establish

two different brain patterns by imagining hand and/or foot

movements. After classifier output analyses, the MI which

was not preferred (biased) by the classifier was selected for

self-paced training.

For this purpose, a computer game-like paradigm was

created in form of a Jump and Run game. Subjects controlled

a jumping ball and had to leapfrog obstacles presented in
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random intervals between 10s and 15s along the way. The

obstacles were presented in form of small hills with the

length of 1 or 3s. Each time the classifier output exceeded a

selected threshold (TH = class mean plus one time its stan-

dard deviation, obtained from Basket training), the difference

between the actual classifier output and the threshold was

mapped to the height of the ball. Subjects were instructed

to perform MI only to over jump the obstacles and not in

the periods in-between. Six runs (each lasted 300 s) with

ten short and ten long obstacles each were performed. Four

subjects succeeded and learned to establish short and long

lasting MI patterns which were necessary to control the

robotic arm.

A Laplacian EEG derivation (orthogonal derivation) was

realized either from C3, Cz or C4, dependent on the results of

the screening procedure performed prior. EEG was recorded

with a 0.5 to 100 Hz band pass filter, notch filter on, and a

sensitivity of 100µV. The sampling rate was 250 Hz.

The two different durations of the mental activity obtained

from training were used to operate a pulse-width-modulated

(PWM) switch. The output of the PWM-switch was depend-

ing on the threshold TH, and the durations tshort and tlong.

Each time the classifier output exceeded TH for t > tshort,

the output was 1; for t > tshort and t > tlong, the output

was 2. Otherwise the output was 0. The two states were

alternatively mapped to the commands hand open/close (state

1) and elbow flexion/extension (state 2). After movement

triggering, a refractory period of 5 s was added so that the

robotic device could execute the movement.

To get control and evaluate the performance subjects had

to perform a predefined movement sequence: hand open (O),

hand close (C), elbow flexion (F), elbow extension (E), O

and C. The evaluation was performed in the “error ignoring”

mode. This means that the robotic device only accepted

commands in the correct order. Wrong commands were

ignored. Subjects trained with the PWC to get familiar with

the system. To evaluate performance, the experiment was

repeated in two different ways (4 runs each): First, after a 1-

min period of no movement execution (non-control), subjects

had to perform the sequence as fast as possible. Another 30-

s period followed and the sequence had to be performed a

second time. A non control period of 1 min finalized each

run. Second, subjects had to perform the movement sequence

according to the timing indicated by the experimenter.

The whole procedure allowed us to identify true positive

(TP) and false negative (FN) decisions during a movement

sequence and false positive (FP) detections during non-

control periods (see Table I, Figure 3), as well as the time

needed by the user to establish a certain movement (not

presented here). A more detailed description can be found

in [13].

III. DISCUSSION

The successful implementation of an EEG-based brain-

switch in two patients shows in principle that thought-based

control of grasp neuroprostheses is possible. However, one

prerequisite for coupling of both systems is the possibility to

Fig. 3. Pulse width coded brain switch. The upper line shows time
frequency maps of one subject (al4) during short (first) and long (second)
MI. The thrid plot in this line shows the averaged classifier output for both
MI patterns. Pictures in the lower part display the feedback screen (left) and
the experimental setting with robot, subject and electrode montage (right).

TABLE I

RESULTS OF THE EVALUATION PROCEDURE OF 4 SUBJECTS. TRUE

POSITIVE (TP) AND FALSE NEGATIVE (FN) MOVEMENT SELECTIONS

ARE OBTAINED FROM CONTROL STATE. FALSE POSITIVE (FP) NUMBER

OF MOVEMENTS OCCURRED DURING THE NON-CONTROL STATE.

NUMBERS IN PARENTHESES GIVE THE RESULTS FROM THE FIRST 4

RUNS. * THIS SUBJECT PARTICIPATED ONLY IN THE FIRST 4 RUNS OF

THE EVALUATION PROCEDURE.

Subject TP FN FP
(control) (control) (non-control)

al4 96 (70) 24 (11) 21 (15)
al9 94 (70) 50 (35) 23 (16)

al10* 58 52 2
ak10 99 (75) 52 (32) 39 (31)

generate characterstic brain patterns by motor imagery and

to detect these significant changes in the EEG-signals.

In the second part, we reported on a pulse-width mod-

ulated brain switch which allows a user to control a two-

axis robotic arm by the induction of only one specific

brain pattern. After screening of three types of MI and

training with the two best separating MIs, one individual

pattern was selected. Here, EEG was recorded from one

Laplacian channel only. Four subjects were included in the

final evaluation. The main problem using only one pattern

is to optimize the LDA threshold in a way to minimize FPs

during non-control state and to select the two time intervals

to distinguish between the two states. If the second time

interval (tlong) is too long, FNs (grasps) are elicited very

easily, if it is too short, FNs (elbow) are triggered. However,

there are still possibilities to be investigated for the setup

of such BCI control. An interesting approach is described

in [14]. Here, hand movement direction was decoded by the

use of MEG and EEG. However, the classification accuracy

has still potential to be improved.
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The application of invasive, intracortical electrodes has

shown a possible way to decode the intention of movement

with high signal quality and transfer rates in primates’ exper-

iments [15], [16]. However, besides cost and the inherent risk

for infections, implantable systems have to prove their long-

term stability over years in clinical trials. This is a mandatory

prerequisite for the usability of BCIs for real-word control

of neuroprostheses or artificial arms in humans.

Before a BCI-based control of a neuroprostheses can be

offered to tetraplegic patients under real world conditions,

several practical issues have to be solved. EEG amplifiers

are already small and wireless interfaces for the cable-free

transmission of the recorded signals have been introduced

recently. However, there is still potential for developing much

smaller devices, because miniaturization has not been an

important research topic so far. At the current state of the

art, wet sensors are used for recording. For applying a BCI

on a daily basis, dry electrodes mounted in a kind of cap/hat

should be available for fast and uncomplicated application

- first prototypes already exist (e.g., [17]). Nowadays, BCI

algorithms (feature extraction, classification) need a lot of

manual expert work. Adaptive algorithms which allow the

algorithm to adapt to changes in the users’ EEG (mood,

fatigue, workload,...) are currently under investigation.

In summary, many neurophysiological basics about the

interaction between the brain and the BCI have to be further

investigated and a considerable amount of technical issues

have to be solved within the next decade to achieve the

ultimate goal of a thought-controlled complete restoration

of arm, hand and finger function including sensory feedback

to the corresponding cortices [18].
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