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Abstract— In this paper we present further results of our
asynchronous and non-invasive BMI for the continuous control
of an intelligent wheelchair. Three subjects participated in two
experiments where they steered the wheelchair spontaneously,
without any external cue. To do so the users learn to voluntary
modulate EEG oscillatory rhythms by executing three mental
tasks (i.e., mental imagery) that are associated to different
steering commands. Importantly, we implement shared control
techniques between the BMI and the intelligent wheelchair to
assist the subject in the driving task. The results show that the
three subjects could achieve a significant level of mental control,
even if far from optimal, to drive an intelligent wheelchair.

I. INTRODUCTION

The idea of moving robots or prosthetic devices not

by manual control but by mere ”thinking” —that is, by

human brain activity— has fascinated researchers for the

past 40 years. But only recently have experiments shown

the feasibility of using brain-machine interfaces (BMI) for

controlling and interacting with robots and wheelchairs [1],

[2], [3], [4], [5], [6], [7].

A BMI monitors the user’s brain activity and translates

their intentions into actions —such as driving a wheelchair

or selecting a letter from a virtual keyboard— without using

activity of any muscle or peripheral nerve. The central tenet

of a BMI is the capability to distinguish different patterns of

brain activity, each being associated to a particular intention

or mental task. Hence adaptation is a key component of a

BMI because users must learn to modulate their brainwaves

so as generate distinct brain patterns. In some cases, user

training is complemented with machine learning techniques

to discover the individual brain patterns characterizing the

mental tasks executed by the user.

What kind of brain signals can directly control robots?

Electrical activity is the natural candidate because of its ex-

cellent time resolution. Most of the hope for brain-controlled

robots comes from invasive approaches that provide detailed,

single neuron activity recorded from microelectrodes im-

planted in the brain [1], [6]. The motivation for these invasive

approaches is the broad evidence that ensembles of neurons

in the brain’s motor system —primary motor, premotor,

and posterior parietal cortex— encode the parameters of
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limb movements in a distributed, redundant way involving

thousands of neurons over several brain cortical areas.

For humans, however, non-invasive approaches avoid

health risks and associated ethical concerns. Most non-

invasive BMI use electroencephalogram (EEG) signals —the

electrical brain activity recorded from electrodes placed on

the scalp. The main source of the EEG is the synchronous

activity of thousands of cortical neurons. Thus, EEG signals

suffer from a reduced spatial resolution and increased noise

when measurements are taken on the scalp. Consequently,

current EEG-based brain-actuated devices are limited by a

low information transfer rate and are considered too slow

for controlling rapid and complex sequences of robot move-

ments. Recently, however, we have shown for the first time

that online analysis of EEG signals, if used in combination

with advanced robotics and machine learning techniques, is

sufficient for humans to continuously control a mobile robot

[2] and a wheelchair [4], [5].

For brain-controlled robots, in contrast to augmented com-

munication through BMI, fast decision-making is critical. In

our view, continuous mental control of robots requires the

analysis of EEG components associated with spontaneous,
intentional mental activity. An alternative is to exploit evoked
potentials —the immediate automatic responses of the brain

to external stimuli. Examples of evoked potentials include

P300 and SSVEP (steady-state visual evoked potentials). In

principle, evoked potentials are easy to detect with scalp elec-

trodes. The necessity of external stimulation does, however,

restrict the applicability of evoked potentials to a limited

range of tasks. As in driving a car, the subjects’ attention

must focus on driving and not on external stimuli.

But voluntary mental control is not enough for steering

a wheelchair or a prosthesis. These tasks require subjects

to also make self-paced decisions. In such asynchronous
protocols, the subject can deliver a mental command at any

moment without waiting for external cues [8], [2], [9]. This

contrasts with synchronous interaction, where the EEG is

time-locked to externally paced cues. Only asynchronous

BMIs allow subjects to send the appropriate mental com-

mand at the right time to make the wheelchair turn and cross

the desired doorway while it is moving continuously.

Despite that asynchronous spontaneous BMIs seem to be

the most natural and suitable alternative, there are a few

examples of synchronous evoked BMIs for the control of

wheelchairs [3], [7]. Both systems are based on P300, a

potential evoked by an awaited infrequent stimulus. To evoke

the P300, the system flashes the possible target destinations

several times in a random order. The subject’s choice is the
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Fig. 1. Diagram of how a mental steering command is integrated in
the shared control system and eventually converted into motor signals. In
this example, obstacle avoidance is the winning behavior and adjusts the
velocities to prevent collision.

stimulus that elicits the largest P300. Then, the intelligent

wheelchair reaches the selected target autonomously. Once

there, it stops and the subject can select another destination

—a process that takes around 10 seconds.

In this paper we present further results of our asyn-

chronous and non-invasive BMI for the continuous control

of an intelligent wheelchair. As mentioned previously, users

steer the wheelchair spontaneously, without any external

cue. To do so the users learn to voluntary modulate EEG

oscillatory rhythms by executing three mental tasks (i.e.,

mental imagery) that are associated to different steering com-

mands. Importantly, we implement shared control techniques

between the BMI and the intelligent wheelchair to assist the

subject in the driving task [10], [11] (see Fig. 1). Here we

describe two experiments on increasing difficulty where three

subjects demonstrated a significant level of mental control of

an intelligent wheelchair.

II. METHODS

A. EEG Protocol

Data was recorded with a portable Biosemi acquisition

system using 64 channels sampled at 512Hz and high-pass

filtered at 1Hz. Then, the signal was spatially filtered using

a common average reference (CAR) before estimating the

power spectral density (PSD) in the band 8-46 Hz with 2 Hz

resolution over the last 1 second. The PSD was estimated

every 62.5 ms (i.e., 16 times per second) using the Welch

method with 5 overlapped (25%) Hanning windows of 500

ms. Thus, an EEG sample was a 1344-dimensional vector

(64 channels times 21 frequency components).

Obviously, not all these 1344 features are used as control

signals. [4] describes the algorithms to estimate the relevance

of the features for discriminating the mental commands and

the procedure to select the most stable discriminant features

that are sent to the statistical classifier embedded in the BMI.

This classifier processes each of the EEG samples and the

BMI combines 8 consecutive responses to deliver a mental

command every 0.5 seconds.

The three subjects participated in 20 calibration sessions

utilized to extract subject specific stable discriminant EEG

features and build a statistical Gaussian classifier (see [2] for

details) for each subject. In these sessions, the subjects sat

in a chair looking at a fixation point placed in the center

of a monitor. The display is a simulated wheelchair in a

first person view. The subjects were asked to execute the

three mental tasks in a counterbalanced order informing

the operator when they started executing the task. Each

calibration session was integrated by 6 trials each, 2 trials

per class. Each trial lasted for 7 seconds but only the last

6 were utilized in the analysis to avoid preparation periods

where the subjects were not yet engaged in the execution of

the mental task. During these sessions the subjects did not

received any feedback, so the monitor display is static.

To drive the wheelchair, subjects 1 and 2 utilized the three

mental commands: imagination of a left hand movement,

words associations and relaxation. These mental commands

were respectively associated with the three wheelchair steer-

ing behaviors: turn left, turn right and move forward. Subject

3 utilized different mental commands: words associations,

arithmetic operations and relaxation, associated with the

aforementioned steering behaviors, respectively.

B. Shared Control

The concept of shared control is used in robotics when

both an intelligent system and a human operator are in

control of a system. In the case of an intelligent wheelchair,

the task of the system is to provide navigational assistance to

users, when they are not able to execute certain manoeuvres

safely and independently. In other words, when users need no

navigational assistance to achieve their plan or intention, they

will be granted full control over the wheelchair; otherwise,

their mental commands will be modified by the system

appropriately. A key aspect of shared control is that a

successful human-robot cooperation requires a good two-

way communication —the behavior of the robot should be

intuitive to the user and the robot should unambiguously

understand the user’s commands.

There exist two reasons why shared control is beneficial

for mental control of a wheelchair by means a 3-class BMI.

Firstly, as shown in Fig. 1, there are “only” 3 possible

steering mental commands: Forward, Left, and Right. So,

fine manoeuvring demands some assistance by the system.

Secondly, the mental commands (the outputs of the BMI) are

not always perfect. In case of such errors, the system has to

provide extra navigational safety.

Fig. 1 shows the shared control approach we have adopted.

It is agent-based, where several types of assistive behav-

iors are implemented as different agents. The inputs to

the shared control module are the sensory readings of the

wheelchair (a laser range finder) and the outputs of the BMI

(a probability distribution over the three possible steering

mental commands generated at 2 Hz). The mental command

with the highest probability is converted to a motor signal

(translational and rotational velocities v and ω). This new

motor signal is then combined with the current wheelchair
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Fig. 2. Indoor environment utilized in task 1. The starting point was the
far extreme in the picture. The subjects were asked to mentally drive the
wheelchair to the other extreme (lower part of the picture).

velocity, in order to generate a smoother driving behavior.

Finally, shared control uses the resulting motor signal and

the sensory readings to select the winning assistive behavior.

C. Experimental Tasks and Analysis

1) Task 1. Slalom: Two healthy subjects were asked

to mentally drive a wheelchair in an indoor environment

including human activity. Subject 1 had previous experience

driving in simulated environments but no experience driving

the real wheelchair. Subject 2 had previous experience driv-

ing in simulated and real conditions (3 days with the real

wheelchair). The task was to drive the wheelchair along a

corridor up to the end while avoiding obstacles (see Fig. 2).

The dimensions of the experimental arena were 19 by 3.5

meters. Subject 1 performed 11 trials and subject 2 did

14 trials. The objective of this experiment was twofold,

namely to demonstrate for the first time the possibility of

continuously driving a complex robotics device such as a

wheelchair in a natural environment using a BMI and to

assess the amount of assistance required during the driving

task. To do so, the percentage of corrective actions by

obstacle avoidance were analyzed over all the trials.

2) Task 2. Docking: Both subjects that participated in task

1 and a third one without any driving experience (simulated

or real) were asked to mentally drive the wheelchair to

reach 3 target locations while avoiding obstacles (see Fig. 3).

Reaching a target is a more complex task than simply

navigating, as in the previous task. This experiment is more

challenging in a second respect, namely subjects cannot

manoeuver back the wheelchair if they overshot the target

by more than 2 meters, thus missing the correct turn. If this

is the case, the trial was considered a failure.

The motivation for this experiment is to assess how well

naive (or almost naive) subjects can mentally drive the

wheelchair along “almost” optimal trajectories. To measure

the performance of our brain-actuated wheelchair we have

compared the final position of the wheelchair with the

end point of the desired trajectory. In particular, we have

calculated the percentage of reached targets as a function

of the distance between the final wheelchair position and

the target at each trial. Furthermore, to assess the degree of

Fig. 3. Indoor environment utilized in task 2. The subjects were asked to
drive the wheelchair to targets 1, 2 and 3. The figure also depicts the initial
positions and ideal trajectories for each target.

mental control achieved by the subjects, their performances

were compared with that of a random BMI utilized as a

baseline —i.e., the wheelchair was driven by such a random

BMI. Each subject, as well as the random BMI, participated

in 30 randomized trials (10 trials per target).

III. RESULTS

A. Experimental Task 1. Slalom

Subjects performed all the trials in a row, without long

resting times between trials. To perform a trial, subjects

needed to operate the BMI for a rather long time —the

total time to navigate along the corridor was in between

250 and 350 seconds, where subjects were delivering mental

commands at 2Hz. So, subjects reported that they suffered

from fatigue at several points during the experiments, but we

didn’t stop experiments to allow them to recover. Both sub-

jects achieved the task of driving the wheelchair to the end

of the corridor while avoiding obstacles. Significantly, they

could do so even at the first trial. As previous experiments

with a simulated wheelchair showed, however, performance

improved with experience [11].

But, as any robotician knows, it is always possible to

program an intelligent wheelchair to navigate in a pre-

specified environment autonomously. So, the question arises

of how much degree of mental control the subjects actually

have. To answer this question, Fig. 4 shows the percentage of

corrective actions executed by the activation of the obstacle

avoidance behavior of the shared control module over all

the trials for the two subjects. At all other times, the user

was in total control of the wheelchair. As the figure shows,

users needed a rather low level of assistance that was variable

along the trials and depended on the context as well as the

level of fatigue and concentration of the subjects.

B. Experimental Task 2. Docking

Fig. 5 shows the percentage of targets reached by each

subject and the random BMI as a function of the distance

between the final wheelchair position and the target at

each trial. The results reflect the importance of previous

experience to successfully drive the wheelchair. Subject 2,

who had previous driving experience with both the simulated

and the real wheelchair, brought it closer to the targets. On
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Fig. 4. Percentage of corrective actions provided by the obstacle avoidance
behavior of the shared control for the two subjects over all the trials.

Fig. 5. Percentage of reached targets by each subject and the random BMI
as a function of the distance between the final position and the target.

the contrary, subject 3, who did not have any previous driving

experience, had more difficulties to place the wheelchair

close to the targets. Subject 1, who had only previous expe-

rience in simulation, achieved an intermediate performance.

Despite the different driving performances among sub-

jects, the three of them showed a significant degree of mental

control of the wheelchair, which requires rather fast and

accurate decisions. For instance, to drive the wheelchair

to target 3, the most difficult one, the subject needs to

pass through the narrow passage in the opposite direction,

right, and then immediately make a sharp turn to the left.

Interestingly, subjects missed quite a few times targets 1 and

2 because they tried to reach them following a straight line

and the collision avoidance behavior (for details see [10],

[11]) pushed the wheelchair away from the target. As shown

in fig. 3, the optimal trajectory is not straight, but the subjects

needed some time to learn appropriate driving strategies

compatible with the behavior of the intelligent wheelchair.

To measure the degree of mental control exhibited by the

subjects, and to show the complexity of the task, we run an

experiment where the wheelchair was driven by a random

BMI (i.e., the mental steering command —left, right, or

forward— was selected randomly every 0.5 seconds). The

performance of such a random BMI was such that it never

brought the wheelchair closer than 1 meter from the target

whereas subjects 1, 2 and 3 did it in 20%, 37% and 7% of

the trials, respectively. The subjects’ level of mental control

is even higher when we consider the percentage of trials

where the wheelchair was driven closer than 2 meters from

the target. In this case, subjects 1, 2 and 3 achieved the task

in 37%, 53% and 27% of the trials, whereas the random BMI

did it only in 13% of the trials.

IV. CONCLUSIONS

Our experimental results show that subjects can operate

our asynchronous non-invasive BMI to control a wheelchair,

task that requires rather fast and accurate decisions. It is

worth noting that, by virtue of shared control, tasks become

possible to achieve even at the first time or day that they are

performed. However, the performances seem to be lower than

the obtained with the simulated version of the wheelchair [4].

Moreover, subjects 1 and 2, who had previous experience

with the simulated wheelchair, report that it is more difficult

to drive the real wheelchair because of its more complex

behavior. Nevertheless, the performance of the subjects, even

the naive subject, is significantly better than a random BMI.

Also, as the first experiments shows, the level of assistance

provided by the shared control module is rather modest.

Altogether, the results prove that the intelligent wheelchair

cannot achieve the task by itself, but requires appropriate

mental commands delivered by the subject at the right times.

In summary, results show that subjects can rapidly achieve

a significant level of mental control, even if far from opti-

mal, to drive an intelligent wheelchair, thus demonstrating

the feasibility of continuously controlling complex robotics

devices using an asynchronous and non-invasive BMI.
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