
  

  

Abstract— The Perception-Action Cycle (PAC) is a central 
component of goal-directed behavior because it links internal 
percepts with external outcomes in the environment. Using 
inspiration from the PAC, we are developing a Brain-Machine 
Interface control architecture that utilizes both motor 
commands and goal information directly from the brain to 
navigate to novel targets in an environment. An Actor-Critic 
algorithm was selected for decoding the neural motor 
commands because it is a PAC-based computational 
framework where the perception component is implemented in 
the critic structure and the actor is responsible for taking 
actions. We develop in this work a biologically realistic 
simulator to analyze the performance of the decoder in terms of 
convergence and target acquisition. Experience from the 
simulator will guide parameter selection and assist in 
understanding the architecture before animal experiments. By 
varying the signal to noise ratio of the neural input and error 
signal, we were able to demonstrate how the learning rate and 
initial conditions affect a motor control target selection task. In 
this framework, the naïve decoder was able to reach targets in 
the presence of noise in the error signal and neural motor 
command with 98% accuracy.   

I. INTRODUCTION 
rain-Machine Interfaces (BMI) have emerged as a new 
technology to enable patients suffering from severe 

motor impairment to interact with their environment. 
Integration of sensorimotor information in a cyclic manner is 
in the core of every interactive behavior of biological 
organisms. In patients with motor deficiency, the cyclic 
aspect of sensorimotor integration, called Perception-Action 
Cycle (PAC) [1], is disrupted and to restore it the BMI 
should serve as a bidirectional channel between the brain 
and environment. Through this channel, the brain sends 
motor commands to external devices and perceives the 
outcome in the form of sensory feedback. 

The bulk of BMI research during the last decade has been 
focused on restoring the reaching and grasping functionality 
of the upper extremities [2]. Two main components of a 
reaching movement are trajectory and target location. 
Focusing on each of these two aspects of a reaching 
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movement, BMI designers have either developed interfaces 
that build trajectories by direct translation of cortical neural 
activity to movement kinematics (trajectory-based BMIs) 
[3-5], or predicted the reaching target by extracting high-
level goal information from the brain (goal-based BMIs) [6]. 
From the PAC stand point, both the trajectory-based and 
goal-based paradigms for BMI design are concerned with 
action restoration by translating neural motor commands for 
a reaching task. However, during goal-directed behavior, 
goal perception provides a valuation basis for action 
selection and it is instrumental for restoration of full PAC. In 
other words, in a bidirectional BMI, the interface establishes 
a dialogue with the brain rather than translating neural 
commands [7]. We have developed a framework in which 
goal information from the user is employed in action 
selection.  

Reinforcement Learning (RL) as an interactive machine 
learning paradigm provides the computational basis of the 
PAC-based BMI. Actor-Critic (AC) is an implementation of 
RL which has separate structures for perception (critic) and 
action (actor) [8]. Given a specific state, the actor decides 
what action to take and the critic evaluates the outcome of 
the action in terms of future reward (goal). The link between 
action and perception in the AC architecture is an evaluative 
feedback, called Temporal Difference (TD) error, that the 
critic provides to actor. There is evidence that neurons in the 
Striatum represent reward expectation in the form of TD 
error [9, 10]. These neurons modulate their firing rate 
depending upon the probability of earning reward [11]. In 
other words, these neurons may provide a continuous 
measure of goal perception in the form of TD error ,which 
an actor (BMI decoder) could use for action selection and 
constructing trajectories for goal-directed reaching tasks.  
Throughout this paper the error refers to reinforcement that 
critic provides to actor in the form of evaluative feedback.    

In this paper, we have designed an AC control 
architecture for BMI that enables the user reach any point in 
the continuum of its workspace through the PAC. 
Complexity of real neural data impedes the investigation of 
behavior of this control system and optimal parameter 
setting during in vivo experiments therefore we have 
developed a simulation platform to characterize the behavior 
of the BMI under neurobiological constraints. Using this 
simulator, we have studied the effect of noise in the input 
and TD error on the performance of the BMI during 
reaching multiple targets. 
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II. METHODS 

A. BMI Architecture 
In this section, we formulate the control architecture of 

the BMI based on AC implementation of reinforcement 
learning. AC is a class of TD learning algorithms that 
intrinsically work based on PAC. By establishing a 
probabilistic mapping between states and actions, the actor 
contains an action selection policy and the critic is a value 
function that maps states to expected future rewards. For 
BMI applications, the actor plays the rule of action decoder 
and the critic provides an evaluative feedback in terms of the 
goal to the actor in the form of TD error. It has been shown 
in the literature that as animals move toward their expected 
goal the firing rate of neurons in the ventral striatum (the 
Nucleus Accumbens (NAc)), will modulate depending on if 
they are moving towards or away from the goal [12]; 
therefore we use the NAc response for evaluating the actor. 
In contrast to the conventional AC architecture where the 
critic should learn a value function for mapping states to 
expected cumulative future reward [13], in our BMI, the 
critic is biologically embedded in the user’s brain and 
evaluates actions of the adaptive agent based on the user’s 
reward expectation. If the agent action is favorable to the 
user’s goal, reward expectation increases and that action 
would be reinforced. Otherwise, the reward expectation 
decreases and the action should be penalized.  

Fig 1A shows the general architecture of our BMI. The 
actor corresponds to an adaptive agent that implements an 
action selection policy by mapping brain’s motor states to 
actions of a robotic arm in a probabilistic manner. In this 
architecture, the role of the agent is to form trajectories by 
associating motor commands in the primary motor cortex 
(MI) at each time step (St) to robot actions in such a way that 
the probability of earning reward from the user’s perspective 
is maximized. Figure 1B shows the architecture of the 
adaptive agent which is composed of a Multilayer 
Perceptron (MLP) neural network with gamma memory 
structure [14] at the input. Each Processing Element (PE) at 
the output of the network corresponds to a discrete action 
that actor can take.  

In principle, training the actor at time step t requires that 
the user generates motor command St and expects a reward 
from execution of that command (Vt). The actor selects an 
action that is associated with the PE with highest value. If 
the robot moves towards the goal, reward expectation of the 
user (Vt+1) increases; otherwise it decreases. (1) translates 
the reward expectation into TD error for adaptation of  the 
actor. 

,                         (1) 

Here rt is the actual reward earned at time t and γ is a 
discount factor that affects the contribution of future 
expectation. The error is back propagated into the network 
and is used to update the parameters of the selected action in 
the output layer and all of the parameters in the hidden layer. 

B. Experiment Setup 
Since it is difficult to understand the intricacies of this 

BMI architecture during in vivo experiments, we have 
developed a simulation environment to study the effect of 
different conditions e.g. changing the tuning depth of 
neurons, on the performance of BMI. For BMI control, we 
seek to navigate a 2-D workspace to acquire one of 4 targets 
(Fig 1C). The environment consists of a 2x2 grid world with 
0.1 spacing between each node. The start point for the agent 
was at the center of the grid. Three experiments were 
defined by placing one target at the right-up corner, two 
targets at right-up and left-up corners and four targets at 
each corner of the workspace. 

An ensemble of 12 cortical neurons was generated based 
on the model in [15]. The firing rate of the neurons was 
computed over 100ms bins. The ensemble was composed of 
four subsets where neurons in each subset were tuned to a 
principal direction (up, down, right, and left) in the 2-D 
workspace. Each output PE of the agent corresponded to one 
of these directions. At each time step, the user’s motor 
command was encoded into MI neural activity by exciting 
the corresponding subsets of neurons. For example, if the 
user decided to navigate the robot in the up-right direction, 
those neurons in the ensemble which were tuned to the right 
direction and up direction were stimulated. At each time 
step, given a particular neural state, the actor computed the 
action values and picked the one with highest value for 
navigating the robot. Based on the robot movement with 
respect to the target, movement and target vectors were 
computed at each time step (Fig 2C).  

  

(A)  

(B)                            

(C)  
 
Fig. 1.  A) Structure of the BMI controller, B) Architecture of the adaptive 
agent, C) Error (reinforcement) is defined based on the projection of the 
movement vector on the target vector in 2D grid world. 
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Displacement of the robot end-effector with respect to the 
target modulated the firing rate of the NAc neurons. The 
value estimator in Fig 1A is responsible for estimating TD 
error from neural activity in NAc. Estimation of the error is 
beyond the scope of this paper; therefore, here we used the 
error signal from the output of the value estimator. 
Considering the target vector as the desired direction, a 
scalar error was defined by computing the cosine of the 
angle between the movement and target vectors. If the 
movement direction was towards the target, a positive error 
was generated otherwise the error was negative. This error 
signal resembled the TD error in AC algorithm in the sense 
that if action was desirable the agent received a positive 
reinforcement otherwise the reinforcement was negative. In 
these simulations, we decreased the learning rate of the 
network after each successful trial. In other words, once the 
agent converged to an optimal policy it no longer needed the 
evaluative feedback and could reach the targets using MI. 

Each experiment was composed of 100 trials. In each trial, 
if the agent could not reach the target in 50 steps the trial 
was considered unsuccessful. The agent was not confined to 
the borders of workspace. In the second and third 
experiments one target was selected randomly in each trial. 
For each experiment we ran 100 Monte Carlo (MC) 
simulations and the average performance in the top 10% 
MCs was computed as the performance of the agent. 

III. RESULTS 
We present the simulation results of the three different 

experiments in terms of action values, convergence, and the 
effect of noise in the input and error signal on the overall 
performance of the BMI. We used action values over time to 
quantify the speed of convergence and if the correct solution 
was obtained. Figures 2A-C show the values of output PEs 
during each experiment. Figure 2A plots the action values 
for the first experiment, we can see actions right and up have 
been selected by the agent. Based on the location of the 
target these two actions are required for completing the task. 
Since the agent can not pick a direct movement to the target, 
it learned how to use a sequence of these two actions in 
order to accomplish the task. Notice also that convergence 
time can be determined by the time needed to reach the 
steady state values which is at time step 100 in Fig 2A. 
During the second experiment where a new target was 
introduced, the agent incorporated a new action to reach the 
target. In Fig 2B we can see that in some instances the agent 
has picked action left in order to reach the left target. By 
increasing the number of targets to four, Fig 2C shows the 
agent has incorporated all the four actions in order to reach 
all the targets. In Fig. 2 we can see that by increasing the 
number of targets, convergence time also has increased.  

An important characteristic of any BMI decoder is its 
performance in the presence of noise. To investigate the 
effect of noise, we tested the system under three different 
conditions. First we reduced the tuning depth of MI neurons 
from 1 to 0.2 where the tuning depth was computed by (2). 

      (2) 

In the next step, Gaussian noise was added to the TD error to 
generate a noisy error signal with 5dB signal to noise ratio. 
Finally we put the agent under a noisy-input, noisy error 
condition. Table I summarizes the performance of the agent 
under these three conditions for different target 
configurations. In this table, NF, In-NF, and Err corresponds 
to Noise Free, Input Noise Free, Error. N-In, N-Err 
corresponds to Noisy Input, Noisy Error signal. 

 
(A) 

 
(B) 

 
(C) 

Fig. 2.  Action values for A) one target on the right-up corner of the 
workspace, B) two targets on the left-up and right-up corners of the 
workspace and C) four targets on each corner of the workspace. 
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TABLE I 
 BMI PERFORMANCE WITH SYNTHETIC AND SURROGATE DATA 

 

 1 Target 2 Target 4 Target 
NF 99.8% 98.3% 95.6% 
Noisy Input 96.0% 80.6% 65.3% 
Noisy Error 100% 99.2% 96.2% 
N-In, N-Err 98.2% 78.0% 53.3% 
Surrogate 14.1% 14.6% 14.2% 

 
In order to test against the null hypothesis that the agent 

can reach the target without any structure in the input data 
we ran a test with surrogate dataset. Surrogate data was 
generated by reducing the tuning depth of all the neurons to 
zero creating a random time-series of firing rates. In this test, 
the error signal was computed the same way as in the 
experiments with tuned neurons. Performance of the BMI 
with surrogate data is presented along with the results with 
synthetic neural data in Table I.  

The results in Table I demonstrate that performance of the 
system is more sensitive to the noise in the input rather than 
noise in the error. Noise in the error signal slightly improved 
the performance of the system because it helped the agent 
escape from local minima. Since the agent is most sensitive 
to the sign of the error, fluctuations in the amplitude did not 
degrade the performance. In general, increasing the number 
of targets decreases the performance however this decrease 
in the performance is more prominent with noisy motor 
commands. However, even with noisy input states and noisy 
error, the agent performed well in all target tasks.  

We performed a random walk test to specify the 
probability of reaching a target by chance. Since the 
probability of reaching all the targets were the same, we 
computed the chance level for one target. For the random 
walk test, the actions of the agent were selected randomly at 
each step. The same limit on the number of steps per trials 
was applied to the random walk test. The probability of 
reaching a target by chance was 0.1% 

IV. CONCLUSION 
In this paper, we introduced a control architecture and 

adaptation procedure for decoding motor commands in MI 
based on an evaluative feedback from NAc which indicates 
user’s goal. Performance of the BMI controller was studied 
in presence of noise in the error and input for three different 
tasks. Our results demonstrated the feasibility of this 
architecture in simulated biological constraints. The adaptive 
agent was able to navigate the robot to the targets in the 
continuum of space. Here we made no assumption about the 
location of the target in the space. In other words, the 
environment for the naïve agent was novel and no training 
was involved. The agent learned how to decode MI neural 
activity on-the-fly just based on an evaluative feedback from 
user. Since the reinforcement signal is innately extracted 
from the brain, the system is self-contained therefore it 
doesn’t require an external source of information for 
reorganizing itself. Here, we focused on designing a decoder 
for MI; however, before adapting the decoder we need to 

characterize the user’s neural response with respect to 
known targets in order to estimate the evaluative feedback in 
NAc. 

The BMI design approach in this paper faces two main 
challenges. First, the performance of this system relies on 
extracting motor commands and evaluative feedback from 
the brain. Provided reliable signals are extracted from the 
brain this system is able to reach any point in the continuum 
of its workspace. The BMI demonstrated robust performance 
in presence of noise both in the motor commands and TD 
error signal. However the BMI was more sensitive to the 
noise in the neural commands than TD error.   

The second challenge is adaptability of the actor using a 
winner-take-all approach in training the decoder. In this 
approach, only the parameters of the winning action are 
updated; therefore, over time some actions become less 
competitive compared to the winner and it is difficult for the 
BMI to reorganize itself for accomplishing the task. We are 
working to revise the update rule to provide the system with 
enough flexibility to converge to a new control policy.  

However, from the results in Table I we can see in spite of 
decreasing the tuning depth of MI neurons and decreasing 
the SNR in the TD error, the agent had a good performance 
in reaching to multiple targets but the convergence time 
increased. This observation implies that using multiple 
agents, each specialized for a particular task, might be a 
better approach than having one agent to learn multiple 
tasks. 
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