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Abstract— By decoding neural activity into useful behavioral
commands, neural prosthetic systems seek to improve the
lives of severely disabled human patients. Motor decoding
algorithms, which map neural spiking data to control pa-
rameters of a device such as a prosthetic arm, have received
particular attention in the literature. Here, we highlight several
outstanding problems that exist in most current approaches
to decode algorithm design. These include two problems that
we argue will unlikely result in further dramatic increases
in performance, specifically spike sorting and spiking models.
We also discuss three issues that have been less examined
in the literature, and we argue that addressing these issues
may result in dramatic future increases in performance. These
include: non-stationarity of recorded waveforms, limitations
of a linear mappings between neural activity and movement
kinematics, and the low signal to noise ratio of the neural
data. We demonstrate these problems with data from 39
experimental sessions with a non-human primate performing
reaches and with recent literature. In all, this study suggests that
research in cortically-controlled prosthetic systems may require
reprioritization to achieve performance that is acceptable for a
clinically viable human system.

I. INTRODUCTION

In recent years, advances in neural technologies have

enabled the creation of neural prosthetic systems (variously

called neural interfaces, brain-machine interfaces, or BMI)

that aim to help severely disabled human patients. There

are many medical, scientific, and engineering challenges in

developing such systems [1]–[5], and all neural prosthetic

systems share in common a signal processing backend. This

backend takes as input raw voltage waveforms from multi-

electrode recordings (or other technologies), and it produces

as output a control signal such as kinematic parameters to

control a prosthetic arm. Along this signal flow, there are

two major steps: first, raw voltage must be separated into

spike trains from single or multiple neural units, called “spike

sorting”; second, these spike trains must be processed by

a decoding algorithm to produce behavioral control signals.
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Both of these steps have been well studied: spike sorting [6]–

[8] and decode algorithms [5], [9]–[23]. These works have

delivered important proofs of concept that brain-machine in-

terfaces can translate neural signals into physical commands.

However, moving to a clinically viable system will require

several significant developments. These developments exist

at all stages: in the recording technologies [24], the sig-

nal processing backend, and prosthetic end effectors such

as robotic arms and computer interfaces [25]. This study

introduces several problems in the signal processing domain.

First, the field must better understand how the recorded

signals change over time, as there has been much work

suggesting various levels of stability in recorded neural ac-

tivity over time [26], [27] - discussed in Section III-A below.

Next, noisy spike trains must be meaningfully processed into

neural firing rates or other quantities appropriate for input

into decode algorithms; we address this potential problem in

Section III-B below. Decode algorithms calculate a mapping

between physical behavior and neural activity. We introduce

unresolved questions in these models in Section III-C below.

Further, a large problem may be fundamental limitations

in the data - discussed in Section III-D. These limitations

exist due to an insufficient signal to noise ratio in the

limited number of neural channels available, as well as model

mismatch (e.q., many algorithms assume linear mappings to

model nonlinear relationships). Other limitations may also

exist in experimental design and algorithmic testing, and we

discuss those potential issues in Section III-E. Many of these

aspects of BMI performance can interact in complex ways.

However, as a starting point in this study, we will address

them individually.

II. METHODS

A. Animal Task and Neural Recordings

Animal protocols were approved by the Stanford Uni-

versity Institutional Animal Care and Use Committee. We

trained a rhesus monkey (Macaca mulatta), monkey L, in

a standard reaching paradigm that has been extensively

reported elsewhere [25], [28], [29]. We give a short overview

here. We implanted a 96-electrode Utah electrode array

(Blackrock Microsystems, Salt Lake City, UT) into premotor

cortex. The array was implanted 10 months prior to the

experiments, showed substantial neural activity, and contin-

ued to do so for several months after the experiments1. The

monkey is trained to make instructed reaches to a number

of points (28 peripheral targets at 4 radial distances from

1Previous reports discuss the same monkey. Here we use a newer implant
(same technology) and a very similar experimental paradigm.
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the central target, uniformly distributed in 7 directions) on a

vertical screen. Monkey L begins with his hand on a target

at the screen center. After a brief hold time, a peripheral

target appears, indicating the goal of his reach. Restrictions

on reaction time ensure that the monkey will reach quickly

and accurately to the peripheral target, then receiving a juice

reward [28]. This experiment was performed on 39 days over

a period of 7 weeks. Prior to this time, this monkey had been

heavily trained on similar tasks for several years. Here we

analyze the first hour of data from each day, with an average

of 1655 reaches per dataset.

B. Neural Prosthetic Decoding

In the results that follow, we will demonstrate the quality

of decoding neural activity based on different segmentations

of the neural data. Accordingly, we need a method with

which to decode neural activity into action so that we can

compare performance of different signal processing tech-

niques. We describe those methods briefly here, where we

refer to blocks of the general signal flow for a BMI, as shown

in Fig. 1.

To extract spike trains from raw voltage, neural units were

isolated off-line using a PCA-based spike sorting algorithm

[30], and quality was assessed by hand using the waveforms

and clusters in principle component space. Units were la-

beled single unit, contaminated single-units (with waveforms

from other neurons), and multi-units. For analyses using

threshold crossings only, all events that crossed a threshold

of three times rms noise were used; more explanation can be

found in [29]. All of these threshold crossings were classified

as single or multi-units in the full spike sorting analysis.

First, we use a simple maximum likelihood (ML) decoder,

as seen in [15], [25]. This method uses training data to build

an expectation, for reaches to each of the reach targets, of the

number of spikes recorded from each neuron. Given test data,

the ML decoder evaluates the likelihood (under a Poisson

noise model) and picks the reach condition with the largest

value (hence maximum likelihood) as the decoded reach. The

percentage of reach conditions correctly decoded is reported

as overall performance [25].

ML decoding makes a discrete choice. In some cases,

we also want to decode moment-by-moment parameters of

the subject’s reach. To do this, we use the popular linear

decoder (LD), which assumes that movement is a linear

combination of recorded neural activity. Using least squares,

the movement can be decoded from neural activity, and

common metrics such as root-mean-squared-error (RMS) or

correlation coefficient can be used to determine the quality of

decode [28], [29]. A third common approach is the Kalman

filter [31], which stipulates a linear relationship between

physical behavior over time and between neural activity and

physical behavior [14], [29].

III. RESULTS AND DISCUSSION

Here we discuss the problems we highlighted in the

introduction, and we demonstrate these problems in our

experimental data and recent publications.
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Fig. 1. Block diagram of a typical BMI illustrating potential areas
for improvement. The lower feedback loop illustrates aspects of neural
adaptation that can be engaged only in closed-loop experiments.

A. Spike Sorting

Spike sorting is a major challenge in neural signal ex-

traction, both for basic neuroscience studies and for neural

prosthetic systems [6]–[8]. We discuss here the importance of

isolating single neuron activity, and the instability of neural

recordings over time.

1) Single Unit Activity: When studying the properties of

individual cells, it is important to isolate “single units” with

accurate spike sorting. Often, recorded neural activity that

likely arises from multiple cells is excluded from analysis,

despite the fact that such activity typically comprises a

substantial portion of recorded neural activity. For example,

from a single dataset, we differentiated all neural events

into 205 clusters. Of these 205 neural units, only 53 came

from well-isolated or somewhat contaminated units (units

with clearly differentiated waveforms that were either not

adjacent to other waveforms in voltage and PCA space

(well isolated) or adjacent but clearly distinct (somewhat

contaminated). The remaining 152 neural units were clas-

sified as likely multi-unit. Table I shows the percent correct

for a ML decode of reach directions from single unit only

and multi-unit activity. Also, adding multi-unit activity to

single unit activity increases performance from 74% to 82%.

Therefore, it seems clear that multi-units should be included

in prosthetic decoders, despite being “unclean” isolations in

a basic science sense.

The complexity of the spike sorting process has substantial

power implications for integrated circuits that may be used

as part of future clinical systems to transmit wireless neural

data from the patient [24], [32], [33] since it changes the

number of bits required per channel for full waveforms

versus threshold crossings. This may be partially alleviated

by small process technologies or novel powering methods,

but is still likely to be a substantial concern. This raises the

question, does full spike sorting produce a large improvement

in decode performance over threshold based systems? Table I

shows a performance comparison between PCA based spike

sorting, using all single and multi-units (third row) and a

single threshold per channel (3 times RMS noise, fourth

row). While small increases in performance can be important

to users, using sorted spikes instead of thresholds produces

a surprisingly small improvement of 7%. Also, the threshold

number represents a base level performance which could

likely be improved by setting the thresholds optimally on a
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TABLE I

DECODE PERFORMANCE BY UNIT TYPE.

Number Decode Performance

of Units ML Decode1 Correlation Coeff.2

Single units3 53 74% 0.86
Multi-units 152 79% 0.91
All sorted units 205 82% 0.92

Thresholds4 96 75% 0.89

1 Note that chance ML decode accuracy is 1/7, or 14%.
2 Correlation coefficient based on a linear decoder.
3 Includes definite and high-confidence single units.
4 Standard thresholding at 3 times RMS noise.

per-channel basis. Further, two thresholds per channel could

also substantially make up the difference in performance

without requiring full broadband data. The optimal may

resemble [34], in which bits of resolution are distributed to

channels based on information content.

2) Waveform Shape Instability: While there is evidence

that neurons themselves maintain stable tuning properties at

least over the course of a day [28], there is significant doubt

about the stability of the raw voltage recordings of those

neurons over the same time periods (due to changing position

of the electrodes with respect to the neurons, or similar)

[26], [27]. If these recordings are not stable, accurate spike

sorting will require additional sophistication to track neural

units over the course of minutes, hours, and days [35].

Fig. 2 shows the dramatic effect of this instability on

decode performance. We fix a decode algorithm to the

population recorded on an array on the first day of recording.

We fix both the maximum likelihood parameters and the

spike-sorting projections (waveform shapes) across seven

weeks. Performance falls precipitously after only a few days,

which must be due to changes in the recorded neural activity

(the signal processing backend has been held constant). This

suggests that nonstationarity will be a substantial problem

in future clinical systems. Human systems to date have used

daily calibration by skilled technicians [36], but this approach

will not economically scale to broad use.

Fig. 3 shows how much a recording can change over the

course of a single experimental recording session. While the

average change in waveform shape is small (many remain

within +/- 5% of their time zero size) several neurons indeed

change their waveforms significantly over just one hour (e.g.

red growing by 25% and the blue shrinking by 25%). The av-

erage absolute change was 0.3%/min. Looking at the slopes

in absolute voltages, the average change was 1 µV/min,

but changes above 5 µV/min were observed on several

units. Examination over even greater time spans may reveal

even greater excursions. More accurately characterizing these

changes requires analysis of multi-week wireless recordings
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Fig. 2. Decoder performance (ML accuracy) determined by generating
spike sorting templates and maximum likelihood coefficients from the first
day of the experiment, and applying those models across 7 weeks of similar
experiments. Sorted data shown in blue, threshold data shown in magenta;
dotted lines indicate data that was re-fit on each experimental day.
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Fig. 3. Waveform change over one hour for 23 example neurons. Change
is normalized to the size of the initial waveform.

[37] from additional animals2. These waveform changes

can and do cause serious spike sorting difficulties. Fig. 4

shows a single unit that remained well isolated over several

weeks (uncontaminated units like this are rare). The tuning

curves in the second row suggest this is the same neuron,

despite substantial waveform changes. More commonly, as

shown in the third row, a unit that is initially well isolated

disappears over days into multi-unit activity. Since spike-

sorting algorithms rely on waveform shape, these instabilities

may confound spike sorting significantly over the course of

several hours, and certainly across days.

Some aspects of these instabilities might be particular to

the experimental preparation considered here. However, these

devices were approved for initial human studies [36], are

likely to be used for future human work, and are believed

to be at least as stable (if not more so) than other multi-

electrode technologies due to its ability to move with the

brain rather than being secured to the skull. Accordingly,

2It is possible that some of the change in performance over days is due to
slight differences in connector impedance. However, this likely makes only
a small contribution since the noise across the array was fairly stable (mean
1.1 µVrms, std 0.2 µVrms). Also, there were a few electrodes with highly
similar waveforms across days. At the the same time, waveform changes
on individual electrodes could be dramatic over only a few hours.
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Fig. 4. Example waveforms over days. Panel A shows an isolated unit
changing over time but (usually) remaining well isolated. From left to right,
top panels show the single unit from days 1,5,16,17,34, and 45. Panel B
shows the tuning pattern across 7 angular directions on those days. Panel
C shows a more common example of a waveform shape collapsing into
the multi-unit activity. Waveforms crossing threshold are shown for one
electrode on six consecutive days.

one might consider different strategies going forward to

compensate for these instabilities. This may be substantially

easier in neural prosthetics than basic science because it is

arguably not important to track single units. Perhaps decode

algorithms can be designed by sorting on tuning alone over

time or using simply no spike-sorting algorithm whatsoever

[20]. In any event, since the effect on performance is high,

serious effort to address these instabilities must be commit-

ted.

B. Models for Neural Spiking

Spike trains present analytical challenges due to their

noisy, spiking nature. A common view is that spikes are

generated from a smooth function of time (the firing rate)

and that this function carries a significant portion of the

neural information (vs. the precise spike timing). If so,

decoding neural activity may require accurately estimate

firing rate. There has been extensive work in modeling spike

trains [5], [38]–[42] and estimating firing rates [43]–[47].

While some decode algorithms average over neural activity

in small temporal windows [17], some algorithms use firing

rates or use spiking models directly [18]. Spiking mod-

els are another source of approximation in BMIs. Though

sophisticated firing rate estimation has proven valuable in

basic neuroscience, a recent study found minimal differences

in prosthetic decode performance using different estimators

[29]. Perhaps models for neural spiking, though clearly yet

one more approximation in decoding, may not be a source

of major performance gain for future research.

C. The Mapping between Physical Behavior and Neural

Spiking

To date, essentially all prosthetic decode algorithms (pop-

ulation vectors, linear decoders, Kalman filters, etc.) have

assumed a linear mapping between kinematic parameters of

the arm and neural firing rates (or, in some cases, spiking

activity directly) [5], [9]–[23]. There are a few potential

shortcomings with this linear choice, including the fact that

most algorithms ignore meaningful nonlinearities in neural

data, and the poor generalization of these models.

1) Nonlinearities: There is wide variation in how well

the activity of a neuron can be linearly related to a given

kinematic parameter, shown in Fig. 5. The top panel shows

the average reach speed, and the second panel shows X-

position for reaches to 7 out of 28 targets. These respresent

typical kinematic signals that one would like a linear model

to accurately predict. The middle panel shows that some

neurons that have a strongly linear relationship with speed

given a specific time lag. In general, a subset of neurons

may have a strong linear relationship with a given kinematic

parameter. However, the remaining two panels show firing

rates from four neurons with firing rates that do not have an

obvious linear relationship to any parameter. For example,

activity in the fourth panel comes from two units with long

plateaus of activity that precede and follow movement. The

two bottom units show double peaks, that also have no

obvious linear transformation to kinematic parameters.

One way linear decoders can cope with non-linearities

is to use only units with clear linear relationships and set

other coefficients to low values. In our data, linear decoders

can come within 10% of the optimal error using between

15-29% of the 53 predominantly single units (for x and y

position and velocity). This number was obtained by sorting

individual units for correlation with the various parameters,

and adding them to the decoder until the error was within

10% of its value for the whole ensemble. To achieve this

performance level on all 4 kinematic parameters together,

only 49% of the units were required. More than half the

units were unused. This underutilization may occur because

neurons with nonlinear relationships to behavior provide

a source of model mismatch to linear decoders. However,

model mismatch is not noise; there is possibly information in

these neural units that linear decoding models (like the linear

filter, the population vector, and the Kalman filter) are unable

to exploit. Future algorithmic designs may offer significant

performance improvements by modeling nonlinearities in this

mapping. Also, nonlinearities could be introduced at many

points in the signal flow shown in Figure 1, not just the

mapping considered here.

2) Generalization: The ability of a model to generalize

to novel conditions is a major concern with any decoding

algorithm. Linear algorithms in particular may generalize

poorly to novel reaches. For example, in the current dataset,

determining an optimum linear filter using 27 out of the 28
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Fig. 5. Comparison of kinematic parameters (blue traces) with neural firing
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Average X-position during reaches to 7 out of 28 targets. (C) Normalized
average firing rates from two units with a strong linear relationship to
velocity. (D) Two example units whose activity precedes and postcedes
neural activity. (E) Two example units with double peaked average firing
rates. For both (D) and (E) there is no obvious linear transform between
neural activity and any of the kinematic parameters.

targets and testing on reaches to the remaining target resulted

in a 4x greater squared error on average than training on a

dataset that included reaches to that target. This occurred

despite the fact that the training dataset included 3 other

examples of reaches to the same angle and 6 other reaches

to the same distance. It is notable that many other prosthetic

experiments to date have used highly constrained movement

tasks which may overestimate the ability of linear models to

generalize [17], [48]. While these tests indeed demonstrate

useful signal extraction from cortex, they do not test a

broad range of behavior. Accordingly, it may be that these

constrained experimental settings pose an unrealistic proxy

to the eventual user mode.

A real prosthesis user will desire a broad range of

potentially novel behaviors. An accurate model mapping

physical behavior to neural activity must be able to decode

novel reaching conditions. Moving to unconstrained settings

in three dimensions, with many other types of reaching

- curved, straight, point-to-point, continuous, and more -

there are many possible model mismatches. Further, arbi-

trary movement in three dimensions engages long-studied

questions of reference frames and coordinate transforma-

tions [49], which may complicate things further. In short,

experimental constraints may not translate to a prosthesis

that generalizes to the needs of a human user. Some effort

should be made in vetting all BMI developments with a range

of experimental control (including very little).

D. Limitations on Precision

There is obviously not arbitrarily large information content

in a given number of neural channels. For example, while

the output of a continuous linear decoder can exhibit high

correlation with the actual hand movement, single trials

often decode to erratic reach behavior. Figure 6A shows an

example of actual reaches to one of the 28 targets in the

center out task. A position-based linear decoder trained on

the first half of the dataset predicted reaches in the second

half of the data with a correlation coefficient of R=0.88,

which shows similar performance to other results in the

literature [14], [48]. Reaches decoded by the linear model are

shown in Fig. 6B. While the average correlation is apparent,

the endpoints exhibit a much higher standard deviation (21

mm vs 6 mm) than actual reaches (the red ellipse).

This illustration represents an “offline” linear decode. One

might argue that these incorrect trajectories can be corrected

using feedback in an “online” BCI experiment. However,

online linear models have shown a tendency to move errati-

cally as well [48]. This may place limitations on how closely

spaced potential targets can be and whether undesired targets

can be avoided. Moving from computer control to the control

of a robotic limb would further emphasize this problem.

1) Models for Physical Behavior: One weakness of algo-

rithms like the linear decoder (and population vector) is that

these algorithms do not have an explicit physical behavior

model, and thus all noise in the recorded signal is passed

through to the decoded arm trajectory. In contrast to this

shortcoming, models such as the Kalman filter [31], which

stipulate a model for physical behavior in arm reaches, have

been shown to outperform the linear decoder in a variety

of cases [14], [48]. This success led to extensions that

assume similar models for physical behavior [5], [13], [17],

[18], [21]–[23], [50]. Unfortunately, this class of models for

physical behavior is inappropriate in some ways for reaching

movements.

Specifically, the Kalman filter assumes a linear dynamical

system (xt = Axt−1+v, where v is some noise). Depending

on the matrix A, reaches from this distribution can only

converge to the origin, oscillate, or diverge to infinity, which

conflicts with the reality that the majority of arm reaches

are point-to-point [49]. Fig. 6C shows that this model can

decoded reaches that fail to stop. Overall, the performance

does not appear substantially less erratic than those from

the simple linear decoder. The Kalman filter, like other

linear models, fails to infer the correct reach goal and stop

precisely. These inadequate physical models have been cho-

sen in large part because of their mathematical tractability.

Instead, a model could exploit the deep literature describing

how reaches are actually made in human behavior [49].
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Fig. 6. Panel A shows actual reaches to one of 28 targets measured using
an infrared motion tracking system. Panel B shows the linear decode of
neural activity during those reaches. Panel C shows a Kalman filter decode
of that same activity. Black dots denote the end points of each reach, and
the black ellipse denotes the standard deviation in the X and Y direction.
Note the red end-point variance ellipse is very small in the first panel.

2) Data Limitations: Current recording technologies can

record from up to hundreds of individual neurons, which is a

tiny fraction of the many millions involved in arm reaching.

Accordingly, the field is and will continue to be limited in

the amount of information it can record from cortex.

BMI devices using lower SNR sources such as ECoG

often try to maximize information throughput by using an

“indirect” signal source. For example, imagining something

that can be somewhat unrelated to arm movement in order

to generate cursor movement [51]. Cortical BMI’s have

relatively higher SNR, and can attempt a “direct” decode

[3]. For example, [15], [17] decoded movements towards

particular targets, but the number and position of targets

was small, fixed, and known. [48] demonstrated improved

accuracy with humans controlling a computer cursor by using

a training paradigm of reaches that moved very slowly.

Much traction might be gained by restricting the space

of movements that can be decoded from neural activity.

Researchers may consider the field of human motor control

(e.g., [49]), where work has shown fundamental constraints

on the human reaching system. By similarly constraining

the space of movements that can be decoded from neural

activity, some performance improvements may be achieved

using currently available signal sources. By recognizing

that there is not an arbitrary amount of information in the

recorded neural activity, the field can begin to ask meaningful

questions about what actions we may hope to extract from

cortex. Designing decode strategies in this way will be

critical in moving towards a clinically viable system.

E. Experimental Limitations

In this final section we introduce another potential issue

in current prosthetic design, and we discuss why we think

addressing this issue may be a valuable direction for future

investigation. As previously noted, experimental constraints

do not necessarily translate to a prosthetic device that can

generalize well. For example, decoding success is often

determined by how well the decoded arm trajectory matches

the true arm movement that was recorded alongside the

(possibly synthetic) neural activity. Unfortunately, this “of-

fline” approach neglects potentially important features of a

real neural prosthesis, including the prosthetic user’s ability

to modify behavioral strategies to improve control of the

prosthetic device (via the decode algorithm). In other words,

as soon as the prosthesis user sees the prosthetic device act,

he/she will bring to bear all his/her behavioral modification

strategies to attempt to drive a natural, desired reach. In

moving towards a usable prosthesis, experimental paradigms

should be tested in this “online” context in order to provide

a realistic proxy to clinical use. This feature is noted by the

large feedback loop in Fig. 1. The field should investigate the

extent to which the subject can (for a given decode algorithm,

spike sorting approach, or other signal processing choice)

engage feedback mechanisms, learning and adaptation, and

other control strategies to improve decode performance.

IV. CONCLUSIONS

Neural prostheses have received much attention in the last

decade. In this study, we used 39 neural datasets, from a

single monkey making center out reaches day after day, to

examine potential areas for future advances. These analyses

suggest that areas such as single unit spike sorting and

advanced spiking models, while useful to pure neuroscience

research, may not provide dramatic performance increases

in future BMIs. However, there are three areas that we

believe may provide more space for improvement. First, non-

stationarity of neural waveforms must be addressed when

moving towards long term clinical systems. Second, linear

models may not be fully exploiting information available

from particularly non-linear neurons. This may also lead to

observed difficulties in model generalization. Third, erratic

decoded movements cause difficulty in predictably control-

ling a BMI cursor. This shortcoming could be mitigated by

more careful analysis of the neural information content, by

limiting the types of reaches based on the information avail-

able, and by meaningfully testing algorithmic developments

in an online context. In all of these issues, it is of great value

for the field to review and compare available methods at each

step in the BMI signal path, and to design future studies (both

experimental and algorithmic) with those results in mind.
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