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Abstract— An analytical solution is provided for a two-equation
coupled model for determination of liver tissue temperature
during radio frequency ablation in the steady state with
one-dimension in space1. Both analytical analysis and model
simulation were conducted to investigate the effects of two
crucial system parameters: blood perfusion rate and convective
heat transfer coefficient on the tissue temperature field. The
quantitative criteria were also derived, under which the two-
equation coupled system can be approximated to a conventional
single bio-heat equation system such as the Pennes model2.

I. INTRODUCTION

Radio Frequency Ablation (RFA) has been used for the

treatment of focal primary and secondary liver malignancies

as a minimally invasive, image-guided alternative to stan-

dard surgical resection ([2]). The classical bio-heat equation

([3]) has been widely used to model the electrical-thermal

heating process during the ablation procedure. However, the

convective heat transfer term between tissue and blood in

the equation is oversimplified, assuming the blood as a vol-

umetric sink of heat and is uniformly distributed throughout

the tissue ([4], [5]). This inaccurate convection term would

greatly affect the prediction of tissue temperature and thus

the necrosis zone after the intervention, especially for highly

blood perfused tissues such as liver.

A new mathematical model consisting of two coupled partial

differential equations has been proposed for determining

temperatures in living liver tissue ([1]). This model breaks

an arbitrary control volume down to two subvolumes: tissue

and blood, and sets up one bio-heat equation for each

volume, similar to the approach of [6]. Heat is convectively

transferred between the two subvolumes, making the two

equations coupled. Unlike the previous model of [6], nu-

merical solutions are calculated by solving both equations

simultaneously, without further simplification of the model

into a single heat equation.

This paper, alternatively, will present analytical solutions

of the two-equation coupled system in steady state with

one-dimensional spatial derivatives, followed by a sensitivity

analysis to investigate how the two crucial parameters, blood

flow perfusion and convective heat transfer coefficient, influ-

ence the tissue temperature field.

1Original model is presented in a parallel paper, [1].
2The research leading to these results has received funding from the Euro-

pean Community’s Seventh Framework Programme under grant agreement
n 223877, project IMPPACT.

II. THEORY

A. Model Equation

For a control volume V , tissue temperature Tt and blood

temperature Tb are given by the following coupled bioheat

equations ([1]):

ρtctVt

∂Tt

∂t
= Vtσt| ~E|2 + Vt∇ · (kt∇Tt) − U(Tt − Tb)

(1)

ρbcbVb

∂Tb

∂t
= Vbσb| ~E|2 + Vb∇ · (kb∇Tb) + U(Tt − Tb)

− ρbcb(∇Tb · ~u) (2)

in which Vt and Vb are tissue subvolume and blood

subvolume respectively. Obviously, they satisfy:

Vt + Vb = V. (3)

After non-dimensionlising temperature, Tt
′ = Tt−T0

T0

, Tb
′ =

Tb−T0

T0

(T0 is the initial tissue and blood temperature at t = 0

and x = 0), time, t′ = t
τ

, and space, x′ = x
L

, we rewrite

bioheat equation in 1D:

∂Tt
′

∂t′
= π1| ~E|2 + π2

∂2Tt
′

∂x′2
− π3

1 − π5
(Tt

′ − Tb
′) (4)

∂Tb
′

∂t′
= π1| ~E|2 + π2

∂2Tb
′

∂x′2
+

π3

π5
(Tt

′ − Tb
′) − π4

π5

∂Tb
′

∂x′
,

(5)

in which

π1 =
τσ

ρcT0
, π2 =

τk

ρcL2
, π3 =

τU

ρc
, π4 =

τux

L
, π5 =

Vb

V
.

(6)

Here we have made further approximation that kt = kb = k,

ρt = ρb = ρ, ct = cb = c. For simplification yet without

losing generality, we set up time constant τ = ρcT0, thus

π1 = 1, π2 =
kT0

σL2
, π3 =

UT0

σ
, π4 =

uxρcT0

σL
, π5 =

Vb

V
.

(7)

B. Model Analysis

In steady state, Equation 4 turns into two coupled second-

order ordinary differential equations. Using a spatial Laplace

3385

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



transform, we obtain:

s2 · π2T̂t
′ − π3

1 − π5
(T̂t

′ − T̂b

′

) + π1
ˆ| ~E|2 = 0 (8)

s2 · π2T̂b
′ − s · π4

π5
T̂b

′ +
π3

π5
(T̂t

′ − T̂b

′

) + π1
ˆ| ~E|2 = 0

(9)

By eliminating one variable, T̂b
′, we can obtain the transfer

function, H , which links radio frequency input power | ~E|2
with system output, Tt

H(s) =
T̂t

ˆ| ~E|2
=

− 1

π2

s2 − π4

π2π5

· s − π3π4

π2π5(1−π5)

s4 − π4

π2π5

· s3 − π3

π2π5(1−π5)
· s2 + π3π4

π2
2π5(1−π5)

s
,

(10)

The static tissue temperature transfer function has numerator

of order 2 and denominator of order 4. By using Taylor

Expansion, an analytical form of zeros and poles of H(s)
(roots of numerator and denominator respectively) can be

obtained. By making certain assumption of parameter values

which we outline below, some zeros offset poles and thus

reduce the system to a lower order. Details of the mathe-

matical derivation will be presented in the Appendix, only a

summary will be given here.

Assumption A: In the case of high blood perfusion relative

to convection coefficient, i.e.
π4

2(1−π5)
π2π3

≫ 1, which is
ρ2c2ux

2

kU
≫ 1 (π5 = Vb

V
≪ 1), H(s) can be approximated

into a second order system:

Hh(s) =
T̂t

ˆ| ~E|2
= − 1

π2

1

s2 − π3

π2(1−π5)

. (11)

substitute Equation 11 into Equation 8, thus T̂b
′ = 0, which

means Tb(x) = T0 = Tb(0) - blood flow is quick enough to

take away convective heat transfer from tissue immediately,

thus keeping a constant temperature over space. The blood

with constant temperature plays a role of a homogeneous

sink, which is exactly the assumption of the Pennes model.

In other words, the two-coupled equation can be simplified

to the Pennes model for conditions of large blood flow perfu-

sion and relatively small convective heat transfer coefficient

between blood and tissue.

Assumption B: low blood perfusion relative to convection

coefficient, i.e.
π4

2(1−π5)
π2π3

≪ 1, which is ρ2c2ux
2

kU
≪ 1 (π5 ≪

1), H(s) can also be reduced to a second order system:

Hl(s) =
T̂t

ˆ| ~E|2
= − 1

π2

1

s(s − π4

π2

)
. (12)

Substitute Equation 12 into Equation 8 to obtain Tb(x) =
Tt(x), blood temperature stays the same as tissue temper-

ature over the space. Hl(s) is also the transfer function

governing spatial distribution of blood temperature. In this

case, there is no need to break one control volume down to

two subvolumes.

In two extreme cases, zero convection coefficient (π3 = 0)

and zero blood perfusion (π4 = 0), Equation 11 and Equation

12 can both be further simplified to:

H ′(s) = − 1

π2

1

s2
. (13)

which is the form of one-phase bioheat equations with only

conductive heat transfer (no convective heat transfer between

tissue and blood).

III. MODEL SIMULATION

All the values of parameters used in the model are shown in

table I except blood flow perfusion rate ux and convection

coefficient U , accurate values of which are unknown in the

literature. The effect of variations of these two parameters

on the system behaviour will be investigated below.

Parameter and Description Value and Unit

ρ,tissue/blood density 1060kgm−3

c, tissue/blood specific heat capacity 3800Jkg−1K−1

k, tissue/blood thermal conductivity 0.49Wm−1K−1

Vb

V
, blood volume fraction 0.02m0

σ, electrical conductivity 0.15Sm−1

T0, tissue/blood temperature at x = 0 310K
L, liver characteristic length 0.1m

TABLE I: Parameters used in the model simulations

By using the parameter values given in Table I, the values of

the non-dimensional parameters in the transfer function are

found to be:

π1 = 1, π2 = 1.03 × 105, π3 = 2.1 × 103U,

π4 = 7.89 × 1010ux, π5 = 0.02.

Figure 1 shows spatial distribution of input radio frequency

power used in the simulation.
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Fig. 1: Input radio frequency power |E|2 = e
−10x

′

Figure 2(a) and Figure 2(b) plot model-predicted static

spatial distribution of tissue temperature Tt
′ in case of

relative high blood flow perfusion (ux = 10−4, U =

1000, ρ2c2ux
2

kU
= 297 ≫ 1) and low flow perfusion re-

spectively (ux = 10−6, U = 1000, ρ2c2ux
2

kU
= 0.0297 ≪

1).3 Both the responses of simplified transfer functions,

3Note the values shown in the figure are relative temperature value, Tt
′,

in reference to temperature at x = 0, T0. That’s why it is negative as
temperature in other region is lower than T0.
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Hh(s) and Hl(s), closely approximate the response of the

original system, H(s). However, the output of uncoupled

system which models only conduction heat transfer, H ′(s),
is obviously different from the original system, suggesting

that tissue/blood convective heat transfer plays an essential

role in the radio frequency ablation process.
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(b) low blood perfusion

Fig. 2: Model-predicted static spatial distribution of tissue temper-
ature field Tt

′ in response to input radio frequency power
shown in Figure 1

Figure 3(a) shows how spatial tissue temperature distribution

varies with different levels of blood perfusion, with fixed

convective heat transfer coefficient U = 1000. The top line

for ux = 0 is the response of H ′(s) (no heat transfer between

tissue and blood) while the bottom line for ux → ∞ is the

response of Hh(s) (ρ2c2ux
2

4kU
→ ∞). The figure shows that

tissue temperature was found to decrease with increasing

blood flow perfusion, however, this temperature drop no

longer happen with further increase of ux when it reach

a certain level, suggested by the almost identical lines of

ux = 10−3 and ux → ∞. This implies that heat transfer

between tissue and blood is now primarily limited by the

other factor, tissue/blood convective heat transfer coefficient.

Figure 3(b), in contrast, plots spatial tissue temperature

variation at different heat transfer coefficients, with fixed

blood perfusion ux. Similar to figure 3(a), the top line for

U = 0 also represent the response of H ′(s), however, the

bottom line for U → ∞ is now the response of Hl(s)

(ρ2c2ux
2

4kU
→ 0). In figure 3(b), a temperature drop was also

found with increasing U , reflecting the effect of increased

convective heat transfer between tissue and blood. More

interestingly, a similar upper-limit effect was also found for

U , illustrating that the heat transfer now primarily limited

by blood flow perfusion rate ux. This demonstrates that the

effective convective heat exchange between tissue and blood

is due to the coordination of blood perfusion and convection

transfer coefficient.
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Fig. 3: Spatial tissue temperature distribution at various blood
perfusion ux and convective heat transfer coefficient U .

IV. CONCLUSION

This paper provided the analytical solution of a two-equation

coupled model for determination of liver tissue temperature

during radio frequency ablation in the steady state with one-

dimension in space. Sensitivity analysis was conducted to

carefully examine the effects of two crucial system parame-

ters, blood perfusion rate and convective heat transfer coeffi-

cient on the tissue temperature field. It has been demonstrated

by both analytical analysis and model simulation that the

original two-equation coupled system can be approximated

by a single bio-heat equation under following conditions:

1) in the condition of high blood perfusion and low convec-

tive heat transfer coefficent, blood temperature stays constant

over space and the system is simplified into the Pennes

model;

2) in the condition of low blood perfusion and high con-

vective heat transfer coefficient, blood temperature is equiv-

alent to tissue temperature over space and the two bio-heat
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equations for blood and tissue subvolumes are essentially the

same.

APPENDIX

Rewrite transfer function H(s) as:

H(s) = − 1

π2

s2 − A · s − B

s4 − A · s3 − B · s2 + ABπ5s
(14)

where A = π4

π2π5

and B = π3

π2π5(1−π5)
.

Equation 14 can be converted into zero-pole-gain form as:

H(s) =
T̂t

ˆ| ~E|2
= − 1

π2

(s − n1)(s − n2)

s(s − d1)(s − d2)(s − d3)
(15)

Two zeros (roots of numerator) are quite straightforward:

n1,2 =
A

2
±

√
A2 + 4B

2
(16)

Three poles d1, d2, d3 are roots of cubic equation:

s3 − A · s2 − B · s + ABπ5 = 0 (17)

The solution of Equation 17 is based on Cardano’s method.

q = −1

9
(A2 + 3B) (18)

r =
1

27
A3 +

1

6
AB − π5

2
AB (19)

∆ = q3 + r2

≈ − 1

108
B2(A2 + 4B) − π5(

1

27
A4B +

1

6
A2B2)

(20)

as π5 = 0.02, suggesting blood subvolume a small fraction of

total control volume. Since ∆ < 0, all three roots, d1, d2, d3,

are real.

With the assumption of A2

B
≪ 1

π5

, we have π5(
1
27A4B +

1
6A2B2) ≪ 1

108B2(A2 + 4B), thus by using Taylor expan-

sion:

√
−∆≈B

√
A2 + 4B

6
√

3
+

√
3π5A

2

√
A2 + 4B

(
A2

9
+

B

2
) (21)

Defining s =
3

√

r + i
√
−∆ and t =

3

√

r − i
√
−∆, the

solutions are:

d1 = s + t + A/3

≈ A

2
+

√
A2 + 4B

2
+

π5A
2

2
√

A2 + 4B
− π5A

2
(22)

≈ n1

d2 = −1

2
(s + t) + A/3 +

√
3

2
(s − t)i

≈ A

2
−

√
A2 + 4B

2
− π5A

2

2
√

A2 + 4B
− π5A

2
(23)

≈ n2

d3 = −1

2
(s + t) + A/3 −

√
3

2
(s − t)i

≈ π5A (24)

As a result, transfer function H(s) is approximated to

Hl(s) = − 1

π2

1

s(s − π5A)
= − 1

π2

1

s(s − π4

π2

)
, (25)

which is Equation 12.

On the other hand, when we make the assumption that A2

B
≫

1, equivalent to B
A2 ≪ 1, again, we use Taylor expansion and

obtain:

∆≈− π5A
4B

27
. (26)

Follow the same step presented above, the solutions can be

obtained as:

d1 ≈ A

2
+

√
A2 + 4B

2
− π5

B

A
≈ n1 (27)

d2,3 ≈ A

4
−

√
A2 + 4B

4
+

π5

2

B

A
±

√

π5B

≈ − B

2A
±

√

π5B (28)

After making stricter limitation A2

B
≫ 1

pi5
, we have B

A
≪√

π5B, so the approximated transfer function is:

Hh(s) = − 1

π2

s − B
A

s(s + B
2A

+
√

π5B)(s + B
2A

−
√

π5B)

≈ − 1

π2

1

s2 − π5B
= − 1

π2

1

s2 − π3

π2(1−π5)

(29)

which is Equation 11.
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