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Abstract— This work relates to the development of compu-
tational algorithms to provide decision support to physicians.
The authors propose a Fuzzy Naive Bayesian (FNB) model for
medical diagnosis, which extends the Fuzzy Bayesian approach
proposed by Okuda. A physician’s interview based method is
described to define a orthogonal fuzzy symptom information
system, required to apply the model. For the purpose of
elaboration and elicitation of characteristics, the algorithm is
applied to a simple simulated dataset, and compared with
conventional Naive Bayes (NB) approach. As a preliminary
evaluation of FNB in real world scenario, the comparison is
repeated on a real fuzzy dataset of 81 patients diagnosed with
infectious diseases.

The case study on simulated dataset elucidates that FNB
can be optimal over NB for diagnosing patients with imprecise-
fuzzy information, on account of the following characteristics—
1) it can model the information that, values of some attributes
are semantically closer than values of other attributes, and
2) it offers a mechanism to temper exaggerations in patient
information. Although the algorithm requires precise training
data, its utility for fuzzy training data is argued for. This is
supported by the case study on infectious disease dataset, which
indicates optimality of FNB over NB for the infectious disease
domain. Further case studies on large datasets are required to
establish utility of FNB.

I. INTRODUCTION

This work relates to the development of computational
algorithms to provide decision support to physicians. Re-
search on this problem was initiated five decades ago, with
a probabilistic Bayesian model of physician’s reasoning by
Ledley and Lusted [1]. Ensuing pioneering work to develop
and validate computer based decision support systems, used
Naive Bayes (NB) [2], [3], followed by rule-based [4] and
symbolic reasoning [5] approaches. In the last two decades,
bayesian networks [6] and fuzzy set theory have been used
to impart mathematical rigor to systems. For a historical
review of Medical Decision Support research see Miller
[7]. Later approaches include artificial neural networks [8],
support vector machines [9], and information theory [10].
Overall Independence or Naive Bayes remains the most
widely researched approach and many comparative studies
have evaluated it as near optimal [11], [3], [12].

With the aim of improving the accuracy of diagnostic
models, a soft computing approach using fuzzy relations
[13], [14] was proposed by Sanchez [15]. Adlassnig [16]
extended this approach and showed its utility with evaluative
studies on Rheumatoid patients. Wagholikar and Deshpande
in their recent case study [17] suggest a marginally improved

accuracy of their alternative fuzzy relation based approach
over Naive Bayes. Besides fuzzy relations, other fuzzy set
theoretic concepts [18], [19] have been found useful for
diagnosis.

In this manuscript we propose a Fuzzy Naive Bayesian
(FNB) model for medical diagnosis, which extends the Fuzzy
Bayesian approach proposed by Okuda [20]. A physician’s
interview based method is described to define an orthogonal
fuzzy symptom information system, required to apply the
model. For the purpose of elaboration and elicitation of
characteristics, the algorithm is applied to a simple simulated
dataset, and compared with conventional Naive Bayes (NB)
approach. As a preliminary evaluation of FNB in real world
scenario, the comparison is repeated on a real fuzzy dataset
of 81 patients diagnosed with infectious diseases.

II. METHODS

A. Naive Bayes

From a training set of patient data, marginal probabilities
of symptoms P (si) and diseases P (dj), and conditional
probabilities of symptoms on all diseases P (si|dj) are cal-
culated by counting frequencies in the data. Given a set of
symptoms (S ≡ {si}) for a patient, the posterior probability
for each diagnosis for the patient is calculated as,

P (dj |S) = P (dj) Πsi∈S
P (si|dj)
P (si)

(1)

Since denominator Πsi∈S P (si), is common in the computa-
tion of posterior probabilities for all diagnoses, it is dropped
and a diagnostic score is computed for each diagnosis as,

P (dj |S) = P (dj) Πsi∈S P (si|dj) (2)

Conditional probability of symptom si for disease dj is,

P (si|dj) =
f(si ∩ dj)
f(dj)

(3)

where f(dj) is the number of patients in the dataset with
disease dj and f(si ∩ dj) is the frequency count of patients
with both si and dj . Symptoms which are not reported in
a particular disease, have zero condition probability for the
disease. While calculating the diagnostic scores, the zero-
probabilities wipe out the information from other symptoms,
and hence to avoid this problem their zero conditional
probabilities are corrected to 0.5 [21].
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Differential diagnosis is output by ranking diagnoses in
descending order of their corresponding computed diagnostic
score and excluding the diagnoses below a cut-off rank.

B. Fuzzy Naive Bayes

When there is uncertainty about the description of a par-
ticular symptom for a given patient, the information is fuzzy
and the particular piece of symptom information is referred
to as fuzzy symptom description or simply fuzzy symptom.
In contrast crisp symptoms are those which are certain.
Each fuzzy symptom (indicated by underscore) is defined
as a fuzzy set on the set of classical/crisp symptoms. The
membership value of crisp symptom si in fuzzy symptom
sk is obtained by interviewing physicians with the question
“What is your degree of belief in sk when a patient asserts
si”

For instance, fever can be described as absent (no),
present (yes), or in terms of its grades–low and high.
When symptom-descriptions are directly recorded from the
patient, without an elaborate examination by the physician
to establish the symptom, their values/grades are likely to be
incorrect due to loose interpretations of the used vocabulary.
The uncertainty resident in such information is vagueness or
fuzziness [22], which is modeled by defining fuzzy sets for
fuzzy descriptions of fever on the crisp descriptions of fever.

The fuzzy membership values are normalized as in equa-
tion 4, and the resulting fuzzy sets are said to form a
orthogonal fuzzy symptom information system.

µsi
si =

µsk
si

Σiµsk
si

(4)

In the orthogonal fuzzy information system the following
relation is satisfied for all fuzzy-symptoms.

Σiµsk
si = 1 (5)

The marginal probabilities of crisp-symptoms P (si) and dis-
eases P (dj), and conditional probabilities of crisp-symptoms
on all diseases P (si|dj) are calculated as in the conventional
NB method. The training data used for this purpose is
required to have accurate symptom information. Conditional
probabilities of fuzzy-symptoms (sk) for particular diagnosis
(dj), are calculated as,

P (sk|dj) = ΣiP (si|dj)µsk
si (6)

Marginal probability of fuzzy symptom sk is,

P (sk) = ΣiP (si)µsk
si (7)

When the information given for a patient test case is fuzzy
S ≡ {sk}, the posterior probability for each diagnosis for
the case is calculated using,

P (dj |S) = P (dj) Πsk∈S
P (sk|dj)
P (sk)

(8)

Since denominator Πsk∈S P (sk), is common for all diag-
noses, it is dropped and a diagnostic score is computed for
each diagnosis as,

P (dj |S) = P (dj) Πsk∈S P (sk|dj) (9)

TABLE I
CONDITIONAL PROBABILITIES OF CRISP SYMPTOMS ON DIAGNOSES

cough fever
no yes low high

Malaria 1 0.5 0.5 1
Tuberculosis 0.5 1 1 0.5

TABLE II
FUZZY SYMPTOM MEMBERSHIPS FROM PHYSICIAN’S INTERVIEW

Crisp Symptoms
Fuzzy Symptoms no cough cough low fever high fever

no cough .9 .1 0 0
cough .2 .9 0 0

low fever 0 0 .9 .4
high fever 0 0 .5 .9

As in the conventional NB, differential diagnosis is output
by ranking diagnoses, in descending order of their computed
diagnostic score and using a rank cut-off.

C. Case study on simulated dataset

To elucidate the differences in FNB and NB approaches,
we describe their application to a simple simulated dataset,
limited to two diagnoses– Malaria and Tuberculosis and
two symptoms– fever and cough. Assume that a training
set having equal number of Malaria and Tuberculosis cases
is obtained by an elaborate examination to establish the
symptoms. The Malaria patients have high-grade fever and
no cough, which is typical for the disease [23], [24], and
the Tuberculosis cases have the characteristic complaints of
low-grade fever and cough [23], [24]. Since information in
the training set has a high degree of precision, frequency
counts on the training set will give accurate estimates for
probabilities. The marginal probabilities of symptoms and
diagnoses are 0.5 and conditional probabilities of symptoms
are shown in table I. For applying FNB, fuzzy symptom
sets were defined by interviewing a physician, as shown in
table II. Applying equation 4, an orthogonal fuzzy symptom
information system is obtained (table III). The conditional
probabilities of fuzzy symptoms are calculated using 6 (table
IV). Now we consider a test set comprised of cases which
are not elaborately examined to establish their symptoms
and the patient’s narration is accepted verbatim. Such patient
information is fuzzy, with some patients incorrectly grading
their symptoms. Let the test set contain few such instances,

TABLE III
ORTHOGONAL FUZZY SYMPTOM INFORMATION SYSTEM

Crisp Symptoms
Fuzzy Symptoms no cough cough low fever high fever

no cough .9 .1 0 0
cough .18 .82 0 0

low fever 0 0 .69 .31
high fever 0 0 .36 .64
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TABLE IV
CONDITIONAL PROBABILITIES OF FUZZY SYMPTOMS ON DIAGNOSES

cough fever
no yes low high

Malaria .95 .591 .654 .821
Tuberculosis .550 .909 .846 .679

TABLE V
SYMPTOM DESCRIPTIONS OF TEST CASES

cough fever
Typical Malaria no high

Typical Tuberculosis yes low
Atypical Malaria no low

wherein the patient having malaria mistakenly reports no
cough and low fever— interchanging low fever for high fever.
This particular case is referred to as atypical case of Malaria.
We apply NB and FNB to this atypical case and to the typical
cases of Malaria and Tuberculosis described above (see table
V), and compute the posterior probabilities for the diagnoses
for each test case. For example while applying NB to typical
Malaria case, P (Malaria|no cough ∩ high fever)
= P (Malaria)xP (no cough|Malaria)xP (high fever|Malaria)
= .5 x 1 x 1 = .5

D. Case sudy on Real dataset

FNB method requires the assumption that the training
dataset is precise. However in the real world precision in
data is rarely practicable. Hence, to investigate the effect of
relaxing this assumption, we evaluated FNB on a real fuzzy
dataset. Comparison of FNB with NB was repeated for a real
dataset of 81 patients diagnosed with 16 different infectious
diseases. An elaborate examination to establish the symptoms
in the patients was not carried out, and the entire dataset
was fuzzy. For evaluation, a Jackknife was performed and
Area under Receiver Operating Characteristic (ROC) curve
for both methods [25] was calculated. To avoid querying for
cases not adequately represented in the training set, cases
for diseases having less than 5 instances in the dataset were
excluded from testing. Hence, there were a total of 67 queries
for 7 different diagnoses (see table VI). The computations
were done using Ruby scripts, developed for the purpose.

III. RESULTS AND DISCUSSION

A. Case Study on Simulated Dataset

Results (see table VII) show that FNB correctly diagnoses
the atypical case of Malaria, while NB is ambiguous as it
computes equal scores for the diagnoses.

Table II, embodies the information that the modifiers low
and high for fever are closer in meaning to each other as
compared, to the modifiers no and yes for cough. This has
an effect of decreasing the power of fever to discriminate
between the diseases, as can been seen in table IV, where the
difference in conditional probabilities of fuzzy symptoms-

TABLE VI
DISTRIBUTION OF QUERIES FROM INFECTIOUS DISEASES DATASET

Diagnosis Count

AGE with dehydration 12
Amoebiasis 6
Chicken pox 7
Hepatitis B 5

Measles 19
Pulmonary Kochs 9

Typhoid 9

TABLE VII
DIAGNOSTIC SCORES FOR TYPICAL AND ATYPICAL CASES USING

CONVENTIONAL NAIVE BAYES(NB) AND FUZZY NAIVE BAYES(FNB)

Test case NB FNB
M T Computed M T Computed

Typical Malaria .5 .12 M .39 .19 M
Typical Tuberculosis .12 .5 T .19 .39 T

Atypical Malaria .25 .25 - .31 .23 M

M – Malaria, T – Tuberculosis

low fever and high fever is less than the difference for fuzzy
symptoms- cough and no cough; while the differences are
equal for their crisp counterparts (table I).

Moreover table II, captures the physician’s belief that
patients not having cough are more likely to report its
presence, than the other way round. Hence, a complaint
of cough should be more strongly interpreted as no cough
than vice-versa. Similarly, patients having high grade fever
are less likely to report it as low grade fever. It captures a
widely held belief in the medical community, that patients
often emphasize and exaggerate their problems [26], [27].
A consequence of modeling such information in FNB is
that, the influence of higher gradations of symptoms, on
the diagnostic computations is tempered, which filters out
exaggerations in patient information. Table VIII demon-
strates this effect of biasing the fuzzy symptom memberships
towards lower symptom grades. µ is the membership value of
crisp symptom-high fever in fuzzy symptom low fever. The
diagnostic scores for Malaria and Tuberculosis are shown
with the Odds score for Malaria, for the Typical case of
Malaria complaining of high fever, and no cough. When
µ = .5 which equals the membership grade of crisp-symptom
low fever in fuzzy-symptom high fever, the bias towards mild
grades is removed, and consequently the odds for Malaria
is found to reduce from 2.24 to 2.09. FNB uses precise

TABLE VIII
EFFECT OF BIASING THE FUZZY SYMPTOM MEMBERSHIPS TOWARDS

LOWER SYMPTOM GRADES

µ Malaria Tuberculosis Odds for Malaria
.5 .3902 .1866 2.09
.4 .4019 .1798 2.24
µ– membership of crisp symptom high-fever

in fuzzy symptom low-fever
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training data to compute posterior probabilities of diagnoses
for fuzzy test cases. However, we argue that it may still be
useful to train FNB on a imprecise-fuzzy dataset, since the
noisy individual cases will cancel out each others mislabeled
attributes, leading to reduced errors in frequency counts and
consequentially to fairly accurate probability estimates.

B. Case Study on Real Dataset

The M-measures obtained for NB and FNB were .48 and
.51 respectively, which indicates that FNB is marginally
optimal over NB, for the described domain. M-measure
is a cut-off independent [25] measure of accuracy and is
especially suitable for comparing algorithms for differential
medical diagnoses [25]. The results demonstrate utility of
FNB for training on fuzzy data. However, the dataset is
small and studies on large datasets are required for drawing
definitive conclusions.

C. Limitations

The described interview based approach to obtain fuzzy
symptom memberships is unfeasible for domains having
large number of attributes. Hence, automated methods to
compute the memberships from data are required.

IV. CONCLUDING REMARKS
The case study on simulated dataset elucidates that FNB

can be optimal over NB for diagnosing patients with
imprecise-fuzzy information, on account of the following
characteristics—1) it can model the information that values
of some attributes are semantically closer than values of
other attributes, and 2) it offers a mechanism to temper
exaggerations in patient information. Although the algorithm
requires precise training data, its utility for fuzzy training
data is argued for. This is supported by the case study on
infectious disease dataset, which indicates optimality of FNB
over NB for the infectious disease domain. Further studies
on large datasets, are required to establish utility of FNB.
The method may be particularly useful for inference from
linguistic data, as such data is inherently fuzzy.
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