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Abstract— Recently, telecare solutions have been demon-
strated as an effective means of monitoring chronic disease
at a distance. A clinician may be managing many tens or
hundreds of remote patients, prompting the need for a decision
support system (DSS) to provide a more automated approach to
managing these vast amounts of data. While simple threshold-
based alert techniques provide some utility in notifying clini-
cians of extreme out-of-range parameter values, more incipient
changes in a subject’s condition may be sooner recognized by
identifying trends in the longitudinal parameter data. Here we
describe an approach for obtaining a piecewise-linear fit, to
longitudinal physiological trend data, comparable with a similar
fitting performed by a human observer, using a graphical user
interface. The technique has been applied to both simulated
and real data, and a comparison performed against the human
scoring for each. On simulated data, the method matches or
betters the human performance in most cases; with the greatest
improvement observed in more noisy data. Similarly, for real
physiological data, the deviation from the human marking, as
a fraction of total variability of the signal, is less than 0.35.

I. INTRODUCTION

Recently, telecare solutions have been demonstrated as an

effective means of monitoring chronic disease at a distance

[1]. Diseases, such as chronic obstructive pulmonary dis-

ease (COPD) and congestive heart failure (CHF), can be

observed through the unsupervised measurement of various

physiological parameters; namely, electrocardiogram (ECG),

blood pressure (BP), spirometry, pulse oximetry, weight and

temperature; and increasingly a number of more invasive

measurements, like blood coagulation times (INR).

The ability to obtain frequent updates of a patient’s physi-

ological condition provides an opportunity to identify health

deterioration at an earlier time-point and preemptively ad-

dress any issues before hospitalization is required. However,

it is the high frequency of data measurement (approximately

daily) which highlights a new challenge in the interpretation

of these data.

A clinician may be managing many tens or hundreds of

patients. With each patient generating several physiological

parameters from each of the biosignal mentioned earlier,

the clinician will soon become overloaded with data. This

prompts the need for a decision support system (DSS) to

provide a more automated approach to managing these vast

amounts of data.
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While simple threshold-based alert techniques provide

some utility in notifying clinicians of extreme out-of-range

parameter values [2], more incipient changes in a subject’s

condition may be sooner recognized by identifying trends in

the longitudinal parameter data. While many data analysis

techniques exist, which may denoise the data and uncover

the underlying data trend, the authors believe that the inter-

pretation of the data by a clinician is made more accessible

via a piecewise-linear fitting; in which case the data may be

summarized by the rate of change and the total duration of

the most recent trends.

This paper describes a technique for obtaining a piece-

wise linear fit to data, similar to that obtained from a human

scorer marking the same data. The algorithm is tested on both

simulated data and real physiological data obtained from a

one year telehealth trial.

II. METHODS

A. Data Set

1) Simulated data: Simulated data were generated to test,

in a controlled manner, the ability of the proposed piecewise-

linear regression to track the true underlying signal. The

simulated data attempts to mimic some commonly occurring

artifacts anecdotally observed in longitudinal physiological

measurement data, such as: varying degrees of inherent vari-

ability in the measurement values; extreme outliers, caused

by poor measurement technique or erroneous parameter

extraction (such as deriving a heart rate from an ECG);

and extended data outages, which occur when the patient is

admitted to hospital for several weeks, or when the patient

simply stops performing recordings for an extended period.

To simulate the underlying signal, over a one year period,

a continuous sequence of linear trends is constructed. The

y-value of the starting point of the first trend is randomly

chosen with uniform probability on the range [−1,+1] (no

units). The final y-value for the trend is dependent on

whether the initial value, let us term it ystart, was greater

than, or less than zero; if it less than zero the final value is

randomly selected with uniform probability on the interval

[ystart,+1], otherwise it is similarly chosen on the interval

[−1, ystart]. This selection process provides some variability

in the simulated signal, while ensuring it is bounded to the

[−1,+1] interval. The duration of each trend segment is

selected randomly with uniform probability on the interval

[1, 84] days. This generated sequence of concatenated linear

trends, is sampled every minute over its duration; this signal
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is later decimated to obtain approximately one measurement

value per day.

Two forms of noise are now added. Firstly, white

Gaussian noise, with a standard deviation of σN ∈
{0.01, 0.05, 0.1, 0.5, 1.0}, is added to every sample. Next,

white Gaussian noise, with a standard deviation of

10σN is added to a configurable fraction, pN ∈
{0, 0.05, 0.1, 0.15, 0.2}, of randomly selected points. To sim-

ulate a sustained outage in measurement values, a config-

urable fraction, po ∈ {0, 0.05, 0.1, 0.15, 0.2}, of consecutive

samples are removed. Finally, a random selection of data

points are taken such that approximately one data point per

day occurs; although the selection process does not exclude

the possibility of several simulated measurements occurring

in the same day, or similarly no measurements occurring for

several days. Varying σN , pN and po across the set of values

shown for each results in 125 simulated data signals. Fig. 1

provides an illustrative example of one such signal, using the

following choice of parameters: σN = 0.1, pN = 0.2 and

po = 0.2.
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Fig. 1. An example of a simulated signal, with parameters σN = 0.1,
pN = 0.2 and po = 0.2. Also shown is the true underlying piecewise-linear
trend signal from which the simulated data is derived.

2) Physiological data: Electrocardiogram, forced spirom-

etry, blood pressure, pulse oximetry and weight measure-

ments were collected from 24 home-dwelling patients us-

ing a remote monitoring system called the TeleMedCare

Health Monitor - TMC-HM (TeleMedCare Pty. Ltd. Sydney,

Australia). The participant ages ranged from 54-92 years

and were suffering either chronic obstructive pulmonary

disease and/or congestive heart failure. The participants were

monitored from February 2007 to January 2008, generating

measurements approximately daily. From these recorded

measurements, a number of physiological parameters where

derived: heart rate (HR), from the electrocardiogram; forced

expiratory volume in one second (FEV1), from the forced

spirometry; systolic blood pressure (SBP) and diastolic blood

pressure (DBP); arterial oxygen saturation (SpO2), from

the pulse oximetry; and finally weight using a standard

weight scale. In total, 144 (24 patients × 6 parameters)

were obtained for analysis. Fig. 2 shows a sample plot of

physiological data for a subject’s weight over approximately

one year.
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Fig. 2. An sample of approximately one year of weight measurement. Also
shown is the human scorers piecewise approximation of these data.

B. Piecewise-linear Regression

A piecewise linear fit [3], f (x) = w1x + w2 (x − b1)+ +
w3 (x − b2)++· · ·+wK+1 (x − bK)

+
+wK+2, for the points

xi and yi, i ∈ {1, ..., N}, with breakpoints at x = bk, k ∈
{1, ...,K}, where,

(x)+ =

{

x if x > 0
0 if x ≤ 0

, (3)

is obtained by solving (1) as w = X+y, by calculating X+,

the pseudoinverse of X.

The difficulty in obtaining a meaningful piecewise regres-

sion lies in the selection of the K breakpoint locations,

bk, and in the definition of a cost function which is op-

timized in the ideal regression. The cost function to be

maximized, J , is simply the sum of the squared errors, J =
∑N

i=1
(yi − f (xi))

2
, subject to the restriction that no error

can be greater than some preset limit, emax: |yi − f (xi)| <
emax∀i.

To select the breakpoints, an exhaustive search of break-

points is completely infeasible; a heuristic approach is more

suitable. A backward selection search, initializing all bk =
xk for k ∈ {1, ..., N} (i.e. every point is a breakpoint), may
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seem achievable; however, the calculation of the pseudoin-

verse, which involves the inversion of a (K + 2)× (K + 2)
matrix, becomes problematic for large numbers of break-

points.

The approach employed here is to limit the number of

breakpoints to approximately 50, by using a 56 day sliding

window, with an overlap of 28 days. Backward selection

involves iteratively removing the breakpoint, from the set

of 50 or so possible breakpoints, that gives the minimum

increase in J . Breakpoints are sequentially removed until any

further removal of breakpoints would violate the maximum

single error allowed by emax. From each 28 day window, the

remaining breakpoints, in addition to the start and end of the

current analysis window, are retained as possible breakpoints

for later analysis.

When the scanning process has been completed for all

analysis windows, the scan is reiterated, using a variable

window size, defined by the span of a maximum of 50 points,

until the selection of breakpoints has converged to a fixed

number.

C. Selecting emax

The distinction between what variation constitutes noise,

or natural variation, and what represents a significant change

in the underlying signal, is highly dependent upon the time

scale, ∆t, which is of interest. In this paper, ∆t = 7 days

was chosen.

To select a value for emax, the following procedure is

implemented. The variation over the time scale, ∆t, is

estimated by finding the standard deviation of the data within

∆t/2 days of each point, after linear detrending. Once a

standard deviation has been estimated for a window about

all data points, the median value is chosen as σS .

Using this estimate of the σS , any data points whose

nearest points on either side, within a ∆t day window, both

differ from the point in question by more than 3σS are

removed. Since these outliers will usually produce an over-

estimation of σS , it is re-estimated, as before, for use later.

The long-term variation in the signal, σL, is now cal-

culated as the standard deviation of the entire signal, with

the previously detected outliers removed. The choice of the

maximum error for the piecewise-linear fit is set at emax =
σL/4.

D. Data Smoothing

After the initial outlier removal, described in section

II-C, data smoothing was performed using robust locally

weighted scatterplot smoothing (robust LOWESS) [4]. Tra-

ditional LOWESS regression replaces a data point by a value

obtained from a weighted linear fit of a number of data

points within a region, termed the ‘span’, about the point

in question. The weighting assigned to each point in the

linear fit, within the span, is given as a non-linear function

of their difference along the x ordinate, with a larger distance

corresponding to a lesser weighting. The robust variation of

LOWESS regression incorporates median filtering to remove

extreme outlying data points, such that the smoothing is not

grossly skewed by these outliers.

The choice of span determines the amount of smoothing

performed on the data. In turn, this is a function of the ratio

between the inherent variability, σS , over the time-scale, ∆t,
in question (7 days) and the long-term variability in the

underlying signal, σL. The heuristic employed to select a

span, s, is given by: s =
(

1 + 3σS

σL

)

∆t.

In case of a poor signal-to-noise ratio, σS/σL → 1, giving

a maximum span of 4∆t (approximately 28 days). For a high

signal-to-noise ratio, s ≈ ∆t.
The piecewise-linear breakpoint search procedure is ap-

plied to this smoothed signal, using the worst case error limit

emax.

E. Human Scoring

A graphical user interface (GUI), developed in MATLAB,

was used to allow human scorers to manually fit a piecewise-

linear curve to the data. The scorers were free to add as

many breakpoints as they preferred, but where briefed to

only use the minimum number necessary to adequately fit

the data. The GUI provides the option to insert, delete or

move breakpoint locations. Three scorings were obtained

from separate individuals, for each of the 125 simulated

signals. Only one scoring was obtained for each of the 144

physiological data signals.

F. Performance Metrics

The performance metrics for the simulated data include

the root-mean-squared error (RMSE) value of the difference

between the true underlying signal and the piecewise-linear

fit, as performed by the algorithm described in section II-B

and each of the three scorers – noting that the simulated data

typically spans the interval [−1,+1].
Since it is impossible to know what the true underlying

signal is for the physiological data, the single human scoring

is used as the ‘gold-standard’ estimation. Performance met-

rics for the physiological data include the RMSE difference

between the piecewise-linear fit determined by the algorithm

and the human ‘gold-standard’ scoring. Also, here we present

an estimate of the variance of the signal over a short-term

window (7 days), termed σS , and over the entire long-term

duration of the signal, termed σL. In addition the RMSE is

listed as a fraction of the values σS and σL.

III. RESULTS

Table I, shows the mean, µ, and standard deviation, σ,

of the RMSE between each true underlying signal and the

piecewise-linear fit to the simulated data, for each of the

three human scorers and the proposed algorithm. The results

are grouped according to the amount of noise, σN , applied

to the signal, noting that there are varying percentages of

outlying points and data outages for the 25 signals within

each σN category.

Table II shows the comparison between the human and

algorithmic fits to the real physiological longitudinal data.

Shown is the mean, µ, and standard deviation, σ, averaged
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TABLE I

A SUMMARY OF THE PERFORMANCE RESULTS FOR SIMULATED DATA.

Scorer 1 Scorer 2 Scorer 3 Algorithm

σN µ ± σ µ ± σ µ ± σ µ ± σ

0.01 0.01 ± 0.004 0.02 ± 0.018 0.01 ± 0.008 0.03 ± 0.016

0.05 0.03 ± 0.013 0.04 ± 0.012 0.04 ± 0.046 0.03 ± 0.023

0.1 0.05 ± 0.012 0.07 ± 0.019 0.05 ± 0.020 0.05 ± 0.022

0.5 0.19 ± 0.055 0.28 ± 0.076 0.27 ± 0.067 0.17 ± 0.025

1.0 0.35 ± 0.109 0.52 ± 0.164 0.49 ± 0.159 0.32 ± 0.056

TABLE II

A SUMMARY OF THE DIFFERENCE BETWEEN THE ALGORITHMIC FIT OF

THE DATA AND THE HUMAN EQUIVALENT.

σS σL RMSE RMSE/σS RMSE/σL

Parameter µ ± σ µ ± σ µ ± σ µ ± σ µ ± σ

HR (BPM) 7.13 ± 4.93 11.50 ± 5.23 2.76 ± 0.77 0.45 ± 0.16 0.27 ± 0.10

FEV1 (L) 0.05 ± 0.02 0.11 ± 0.07 0.04 ± 0.03 0.71 ± 0.57 0.32 ± 0.19

SBP (mmHg) 8.04 ± 1.95 12.84 ± 3.18 4.13 ± 2.05 0.53 ± 0.29 0.32 ± 0.13

DBP (mmHg) 5.41 ± 1.60 10.16 ± 3.37 3.62 ± 2.83 0.73 ± 0.67 0.34 ± 0.16

SpO2 (%) 1.03 ± 0.54 1.67 ± 1.01 0.51 ± 0.35 0.50 ± 0.16 0.30 ± 0.06

Weight (kg) 0.31 ± 0.09 1.72 ± 1.24 0.49 ± 0.94 1.65 ± 3.19 0.26 ± 0.17

across all 24 subjects. To place the values reported in context

for the natural variations of the signals, the estimated values

of σS and σL are also shown.

Fig. 3 illustrates a comparison between the human scoring

of the weight data against the piecewise-linear fit derived

by the proposed algorithm. This is the same data as shown

in Fig. 2, without linear interpolation between the raw data

points.
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Fig. 3. A sample of approximately one year of weight measurement,
identical to that shown in Fig. 2. The ‘solid’ line shows again the human
observer’s piecewise-linear fit to the data. The ‘dashed’ line illustrates the
algorithmically determined fit of the data.

IV. DISCUSSION & CONCLUSION

An approach has been described for obtaining a piecewise-

linear fit, to longitudinal physiological trend data, compara-

ble with a similar fitting performed by a human observer,

using a GUI. The technique has been applied to both

simulated and real data, and a comparison performed against

the human scoring for each.

From the µ values in Table I, it is evident that the

algorithm on average performs equally well, or better than

all human scorers; with the exception of the case where

σN = 0.01, for which errors were observed to occur mainly

around the breakpoints of the true underlying piecewise-

linear trend due to the alteration of the signal caused by

the smoothing of the LOWESS regression; although the

magnitude of the errors, as a fraction of the dynamic range

of the signal (±1) is insignificant. The greatest improvement

over the human scoring was achieved on the noisiest data

(σN = 1.0).

Table II demonstrates that the algorithm was also able to

match the human scoring of the physiological data reason-

ably well. All RMSE/σL values fall below 0.35, indicating

that as a fraction of the long-term variation of the signal, the

human scoring is tracked well. Indeed, this is echoed with

similar results in the RMSE/σS ratio; except for the weight

parameter, which gives RMSE/σS = 1.65. This is perhaps

indicative that the heuristic selection of emax = σL/4 is not

the optimum choice.

Very few works relating to the interpretation of longitudi-

nal home-telecare data have been described, possibly due

to the relative newness of such data. Bellazzi, et al. [5]

have devised a more abstract technique for analyzing data

from diabetic patients, but their method does not attempt to

characterize the data in a detailed manner, which is still open

to intuitive interpretation by a clinician.

Future work will focus on the identification of which

trends should be considered significant in a clinical context

and exactly how these trends may map to an indicator of

subject health status and enhance the utility of a decision

support system for telecare monitoring.
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