
 
 

 

  

Abstract—A wide variety of methods based on 
fractal, entropic or chaotic approaches have been 
applied to the analysis of complex physiological time 
series. In this paper, we show that fractal and entropy 
measures are poor indicators of nonlinearity for gait 
data and heart rate variability data. In contrast, the 
noise titration method based on Volterra 
autoregressive modeling represents the most reliable 
currently available method for testing nonlinear 
determinism and chaotic dynamics in the presence of 
measurement noise and dynamic noise. 

1. INTRODUCTION 
HYSIOLOGICAL signals such as heart rate and blood 
pressure [1], respiration [2], and stride intervals [3] 

fluctuate continuously over time reflecting their complex 
regulation by the central nervous system via close-loop 
reflex circuits and/or possible open-loop drive inputs. 
Traditional linear signal analyses are not well suited to 
these physiological time series, since they may exhibit 
both deterministic and stochastic components and may be 
nonlinear and nonstationary. To understand the underlying 
‘hidden control mechanisms’ as a basis for diagnosing 
disease states, various complexity measures have been 
introduced to characterize such physiological fluctuations. 
For instance, monofractal and multifractal analyses have 
been used to study the ‘temporal’ self-similarity and long 
range correlations of stochastic time series [4, 5]. Similarly, 
various mono-scale [6] and multiscale entropy measures [7] 
have been proposed to depict the underlying irregularity.  

Alternatively, many deterministic methods have been 
used to characterize the nonlinear (or even chaotic) 
dynamics of these signals. Because most nonlinear indices 
are not robust to measurement or dynamic noise, they are 
often used in conjunction with the surrogate data method 
[8, 9] to determine whether the signal contained linear or 
nonlinear correlations. However, detection of nonlinear 
correlations provides only a necessary but not sufficient 
proof of deterministic chaos. 

In contrast, the noise titration technique [10] offers a 
highly sensitive litmus test (sufficient proof) for chaotic 
time series in the presence of measurement noise or 
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dynamic noise. It provides a quantitative measure of the 
relative chaos level regardless of whether the chaos is 
purely “deterministic” in origin or is induced by dynamic 
noise or by deterministic inputs [10, 11]. These important 
properties of the noise titration technique have been 
recently “rediscovered” and misconstrued by some authors 
[12, 13].  

Here, we critically compare various fractal, entropy and 
nonlinear surrogate measures against the noise titration 
technique in analyzing complex time series. We show that 
noise titration provides the best overall performance in 
characterizing physiological time series. 

2. METHODS 
2.1. Fractal dynamics 
Detrended fluctuation analysis (DFA) [14] and 1/f 

power spectral analysis are two equivalent (time- vs. 
frequency- domain) monofractal routines to depict the 
putative temporal self-similarity of complex time series. 
The scaling index α of DFA quantifies the “roughness” of 
time series in terms of the root-mean-square deviations 
F(n) of the integrated and detrended data in observation 
windows with varying lengths n, expressed as the linear 
regression slope (α) in log(F(n))- log(n) coordinates. The 
index β of 1/f scaling is the linear regression slope of 
power spectral density vs. frequency in log-log coordinates. 
The indices α and β are related by β ≈1-2α with 
differences only in temporal detrending. 

2.2. Sample entropy and multiscale entropy 
Sample entropy (SampEn), an extension of approximate 

entropy, measures the likelihood that runs of patterns that 
are close for m observations remain close on next 
incremental comparisons. It can be calculated as [6]: 
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where m is embedding dimension and r is tolerance. B is 
the number of vectors xm(j) within r of xm(i), and A is the 
number of vectors xm+1(j) within r of xm+1(i). In this work, 
m=2 and r=0.15. 

An inherent difficulty with such mono-scale entropy 
measures is that they all treat white noise as most 
“complex” even though white noise is not very interesting 
from a physiological point of view. To remedy this 
dilemma, multiscale entropy (MSE) has been suggested to 
describe complex time series from a temporal 
scale-dependent perspective [15]. First, time series are 
transformed into different scales by coarse-graining. For 
one dimensional time series (x1, x2, …, xN), the 
coarse-grained time series can be constructed for a given 
scale factor τ as follows: 
 ∑

+−=

=
τ

τ

τ τ
j

ji
ij xy
1)1(

)( /1 ,   τ/1 Nj ≤≤            (2) 

Cheng LI, Guang-Hong DING, Guo-Qiang WU, Chi-Sang POON (Fellow, IEEE) 

 Fractal, Entropic and Chaotic Approaches to Complex Physiological 
Time series Analysis: A Critical Appraisal 

P 

3429

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



 
 

 

Then, mono-scale entropy measures such as SampEn can 
be used to calculate the entropic complexity at all scales.  

2.3. Surrogate data method 
In the surrogate data method, a “bootstrapping” 

approach is used to generate random “surrogate data” as a 
null hypothesis for discrimination against the original data 
using appropriate nonlinear test statistics. The use of 
surrogate data for hypothesis testing sanitizes the inherent 
sensitivity of these nonlinear test statistics to random noise. 
Several types of surrogates are available for different null 
hypotheses. Shuffled surrogates are consistent with the 
null hypothesis of δ-correlated random process and retain 
only the magnitude distribution of the original data. It can 
be constructed by simple random permutation of the 
original data, hence eliminating all linear or nonlinear 
dependencies in the data. The null hypothesis of FT 
surrogates is that the test data results from linear filtering 
of Gaussian white noise inputs [8]. FT surrogate data can 
be constructed by randomizing the FFT phase spectrum 
with a Gaussian distribution, and then performing inverse 
FFT. FT surrogates eliminate all nonlinear correlations in 
the original data, but not linear correlations assuming 
Gaussian distribution.  

The AAFT surrogates assume that the test data results 
from linear filtering of Gaussian white noise inputs, 
followed by a possibly static nonlinear transformation [16]. 
To generate AAFT surrogates, the original data is first 
rescaled to a normal distribution and a FT surrogate of the 
rescaled data is constructed; AAFT surrogates are then 
constructed by sorting the FT surrogate according to the 
ranking of the original data. Like FT surrogates, the AAFT 
surrogates also eliminate all nonlinear correlations while 
preserving the linear correlations, but the AAFT surrogates 
also attempt to reproduce the magnitude distribution of the 
original data instead of assuming a Gaussian distribution. 
However, in the AAFT algorithm the rescaling procedure 
introduces inaccuracies in the power spectrum of the 
surrogate data. IAAFT is the iterative version of AAFT to 
minimize the errors in the surrogate data power spectrum 
by repeating the following two sequential steps iteratively: 
after AAFT is constructed (1) the surrogate is Fourier 
transformed, its Fourier amplitudes being adjusted back to 
the AAFT surrogate’s amplitude; (2) rescale the IFFT data 
back to the original data’s distribution as in AAFT 
algorithm.  

2.4. Noise titration 
In the noise titration method every data segment is first 

subjected to nonlinear detection by comparing the 
prediction errors of linear autoregression model (Eq. 3) 
with Volterra-Wiener series (Eq. 4) [17]:  
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where κ is the memory and d is the degree of the 
polynomial. Typically, κ=6 and d=3 for nonlinear fitting 
and κ=84; d=1 for linear fitting, and M = (κ+d)!/( κ!d!) is 
total number of terms of Volterra series. The null 
hypothesis—a stochastic time series with linear 
dynamics—is rejected if the best nonlinear model provides 
a significantly better fit to the data than the best linear 
model using parametric statistics (F-test) or 
non-parametric statistics.  

To perform noise titration, white noise of increasing 
standard deviations is added to the data until nonlinearity 
is no longer detectable [10]. The noise limit (NL) is 
calculated as the percentage of signal power added as 
noise. Under this numerical titration scheme, chaos is 
denoted as NL>0 where the chaos level is estimated by the 
NL value. Conversely, if NL=0, then it may be inferred 
that the series either is not chaotic or the chaotic 
component is already neutralized by the background noise 
(noise floor) in the data. 

2.5. Data acquisition 
Data were derived from Physionet [18] where the 

beat-to- beat (RR) interval series of healthy subjects were 
extracted from the MIT-BIH Normal Sinus Rhythm 
Database according to annotations for only normal beats. 
The slow arbitrary gait intervals were extracted from 
Unconstrained and Metronomic Walking Database. 

3. RESULTS 
To determine whether monofractal, multiscale entropy 

and noise titration methods can truly detect nonlinear 
correlations, we applied the DFA, 1/f scaling, MSE and 
titration tests to the gait and HRV time series and their 
shuffled and FT surrogates (Fig. 1). Interestingly, both the 
gait and HRV series demonstrated remarkably similar DFA, 
1/f scaling and MSE patterns. However, none of these 
measures could distinguish the original gait and HRV data 
from the corresponding FT surrogates. By contrast, the 
corresponding shuffled surrogates were different from 
both the original series and the FT surrogates indicating 
that the original gait and HRV data had strong temporal 
correlations. Thus, although DFA, 1/f scaling and MSE 
could well discriminate the test data from the 
corresponding shuffled surrogates indicating the existence 
of temporal correlations, none of them could distinguish 
the test data from the FT surrogates. Since the FT 
surrogate can be treated as linearly correlated noise, none 
of these methods (DFA, 1/f scaling and MSE) could 
effectively distinguish linear and nonlinear correlations.  

By contrast, the titration method revealed that the gait 
data and HRV data had completely different properties: the 
former was linearly correlated random noise (NL=0) and 
the latter was chaotic (with NL =16.55±4.37). In addition, 
FT and shuffled surrogates of the gait and HRV data were 
correctly identified as noise by titration.  

Besides, the sensitivity of the AAFT/IAAFT methods to 
false positives is well-known [19, 20]. For this reason, 
some authors [19] have suggested that Volterra 
autoregressive modeling [17] be used as a diagnostic tool 
for detecting dynamic nonlinearity directly on the original 
data as well as verifying the performance of the IAAFT 
surrogate data, an approach that has been found effective 
in circumventing the potential pitfalls of the AAFT/IAAFT 
algorithm [16].  

Recently, some authors contended that titration might 
“fail” to distinguish colored noise from chaos in some 
nonchaotic systems that are driven by dynamics noise [12, 
13]. In fact, many inputs including dynamic noise are 
known to provoke complex dynamics in otherwise 
nonchaotic systems, and these effects have already been 
carefully delineated in the titration method [10]. Here, we 
compared the behaviors of the logistic equation under 
noise-free conditions in the period-3 oscillation regime 
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and when driven by dynamic noise input. In Fig. 2, after 
dynamic noise was added, the period-3 oscillation 
fluctuated from one period to another in a chaos-like 
manner (Fig. 2b1) as revealed by the return map (Fig. 2b2) 
and titration (Fig. 2b3). Thus, rather than a “failure” as 
misconstrued in ref. [12, 13], titration correctly identified 
the noise-induced chaos. 

4. DISCUSSION 
Fractal and entropy methods have been widely applied 

to characterize complexity and long-range correlation. Our 
results show that monofractal methods such as DFA and 
1/f scaling and entropy methods such as SampEn and MSE 
are not suitable for testing nonlinearity of the signal. It has 
been suggested that the healthy human HRV may 
demonstrate multifractality (instead of monofractal scaling) 
which can be related to nonlinear dynamics according to 
surrogate data analysis, and the multifactality is lost in 
heart failure [4, 5]. Such inference of nonlinear dynamics 
in HRV from multifractality analysis is necessarily 
dependent on the surrogate method, which itself is 
unreliable [19, 20].  

The surrogate data method is an indirect test of 
nonlinear correlations and is made computationally 
efficient via the Wiener–Khinchin theorem for power 
spectral density. It has been widely used in the analysis of 
experimental time series for the detection of nonlinear 
dynamics and even deterministic chaos. However, recent 
studies showed that the FT, AAFT and IAAFT methods 
are false positives [19] particularly for data series with 
non-Gaussian innovations [20]. Thus, matching the power 
spectrum and magnitude distribution in the surrogates may 
not be sufficient in discerning nonlinear from 
non-Gaussian processes. Thus these methods must be 
carefully tested before their application to nonlinear 
physiological time series analysis which are not 
necessarily Gaussian.  

In contrast, the noise titration method offers a highly 
sensitive litmus test for nonlinearity and chaos of HRV 
[21]. In combination with spectral analysis, it provides a 
powerful way to explore the mechanism of HRV [11]. It is 

important to recognize that a nonlinear dynamical system 
when driven by deterministic or noise inputs may behave 
in a complex manner that is fundamentally different from 
the undriven (“autonomous”) system (see discussions in 
[10, 11]). The titration technique is applicable to the 

Fig. 2. Noise-induced chaos in the noise-driven logistic map. The 
left column shows the periodic solution of the noise-free model 
with parameter r=3.842, while the right column is the chaotic 
behavior induced by dynamic noise. The statistic comparison of 
linear and nonlinear fits did not exhibit any difference in the 
noise-free case (a3), yet the difference in the case of dynamic 
noise was significant (b3). The chaos behavior was also verified 
by the return map in noise stimulation (b2).  

 
Fig.1.  Comparison of detrended fluctuation analysis (DFA), 1/f scaling, multiscale entropy (MSE) and noise titration on gait time 
series (a1-a4) and heart rate variability time series (b1-b4). Data lengths for all groups (n=4 each) were 2048. Results were compared 
with corresponding FT surrogates, and shuffled surrogates (n=40). Data are means ± SEM. 
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detection (and quantification) of chaotic dynamics 
regardless of whether the chaos is purely deterministic or 
induced by dynamic noise. This approach has yielded new 
mechanistic insights about the complexity of physiological 
time series.  

5. CONCLUSION 
Our results demonstrate that the monofractal and 

mono-scale or multiscale entropy methods are poor 
indicators of nonlinearity. Although various types of 
surrogate data have been proposed for detection of 
nonlinearity, they are not always reliable. Furthermore, 
detection of nonlinearity provides only a necessary but not 
sufficient proof of chaos. We conclude that the noise 
titration method based on Volterra autoregressive 
modeling represents the most reliable method currently 
available for testing nonlinear determinism and chaotic 
dynamics in physiologic time series.  
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