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Abstract— As an important neuron model, the Morris-Lecar
(ML) equations can exhibit classes I and II excitabilities with
appropriate system parameters. In this paper, the effects of
external DC electric field on the neuro-computational properties
of ML model are investigated using bifurcation analysis. We
obtain the bifurcation diagram in two dimensional parameter
space of externally applied DC current and trans-membrane
potential induced by external DC electric field. The bifurcation
sets partition the two dimensional parameter space about the
qualitatively different behaviors of the ML model. Thus the
neuron’s information encodes the stimulus information, and
vice versa, which is significant in neural control. Furthermore,
we identify the electric field as a key parameter to control
the transitions among four different excitability and spiking
properties.

I. INTRODUCTION

The type of bifurcation the neuron experiences determines

the neuronal excitable and spiking properties, and hence the

neuro-computational attributes [1]. Hodgkin suggested two

different classes of neurons, namely Class I and Class II

neurons according to their frequency responses to a constant

current stimulation [2]. For the bifurcation theory, Class

I excitability is related to a saddle-node bifurcation, and

action potentials are generated with arbitrarily low frequency,

depending on the strength of the applied current. On the

other hand, Class II excitability is concerned with the Hopf

bifurcation, and Action potentials are generated in a certain

frequency band that is relatively insensitive to changes in the

strength of the applied current [1, 3]. Many mathematical

models have been proposed to describe neural activities [1,

4], which may exhibit either or both of two firing modes.

For example, the original Hodgkin-Huxley [5] and FitzHugh-

Nagumo model (FHN) [6] are the typical Class II neuron

models. The Hindmarsh-Rose model [7, 8], the Morris-Lecar

model [9], the Wilson model [10], and the Izhikevich model

[4] show Class I excitabilities. The two- or three-dimensional

models may have advantages not only in their practicality in

simulations with large scale coupled neuronal systems but

also in its clarity of mathematical essence of bifurcation

structure. Because the ML model has biophysically mean-

ingful and measurable parameters, the model became quite

popular in computational neuroscience community [11, 12].

The authors gratefully acknowledge the support of the NSFC (No.
50537030 and 50707020) and NSF for Post-doctoral Scientists of China
(No. 20070410756, 20080430090 and 20080430731).

Y. Q. Che is with the School of Electrical Engineering and Automation,
Tianjin University, Tianjin, P. R. China. yqche@tju.edu.cn

J. Wang, X. L. Wei, B. Deng, and F. Dong (IEEE senior member) are
with faculty of the School of Electrical Engineering and Automation, Tianjin
University, Tianjin, P. R. China.

H. Y. Li is with faculty of the Department of Automation Engineering,
Tianjin University of Technology and Education, Tianjin, P. R. China.

Due to the rapidly increased electromagnetic exposure in

environment [13], many diseases probably caused by electro-

magnetic exposure are reported [14, 15]. Thus the interaction

between electric field and biological tissues has been of

longstanding interest. The effect of externally applied DC

electric fields on neural excitability has been demonstrated in

many neuronal systems [16-20]. These studies show that DC

electric fields could decrease or increase neuronal excitability

[16], modulate neuronal thresholds [17] and neural firing

[19], and cause long time polarization [20]. However, it

remains unclear that how the DC electric fields affect the

neuro-computational properties of neurons. Especially, to the

best of our knowledge, this problem has not been addressed

using a bifurcation analysis.

In [21], we have investigated the Hopf bifurcations in

HH model caused by external DC electric field. In this

paper, we will give a detailed bifurcation analysis to further

examine the role of electric field in determining the neuro-

computational properties in context of ML model. Based on

the results we obtained in [21], the modified ML model

exposed to DC electric field is proposed. In the modified

ML model a new parameter VE is introduced to denote the

effect of external electric field. We calculate the bifurcations

in the modified ML model in two dimensional parameter

space Iext − VE. The parameter space are partitioned into

qualitatively different regions by bifurcation curves. Thus

we relate the qualitatively different behaviors of neuron to

the external stimuli, which is useful in neuron control. This

study maybe throw some light on the interference mechanism

between biological systems and electric exposure.

II. MODELS

A. Morris-Lecar model

The ML model is composed of the following differential

equations:

CM

dV

dt
= Iext − [gCaM∞(V − VCa)

+gKN(V − VK) + gL(V − VL)] (1a)

dN

dt
= φ

N∞ − N

τN

(1b)

where V represents membrane potential in mV, the time t

is measured in msec, the variables N ∈ [0, 1] represents the

potassium activation varable. The Parameters VCa, VK and VL

represent the equilibrium potentials of calcium, potassium

and leak current, respectively. They are determined uniquely

by the Nernst’s equations. gNa, gK and gL are the maximal

conductance of the corresponding ionic currents. They reflect

the ionic channel density distributed over the membrane. CM
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is the membrane capacitance, Iext is the externally-applied

DC current. The parameter φ sets the time scale for the

recovery process. The steady state activation M∞ and N∞ are

nonlinear functions of V , given by the following equations:

M∞ = 0.5

[

1 + tanh

(

V − V1

V2

)]

N∞ = 0.5

[

1 + tanh

(

V − V3

V4

)]

where V1 and V3 are the the activation midpoint potential

at which the corresponding currents are half activated. V2

and V4 denote the slope factor of the activation. The time

constant τN about the potassium activation is described by

τN =
1

cosh
(

V−V3

2V4

) (2)

B. The modified ML model exposed to external electric field

According to our analysis in literature [21], when exposed

to DC electric field E, the original ML model is modified as

the following form:

CM

dV

dt
= Iext − [gCaM∞(V + VE − VCa)

+gKN(V + VE − VK) + gL(V + VE − VL)] (3a)

dN

dt
= φ

N∞ − N

τN

(3b)

The new parameter VE is the induced trans-membrane

potential which reflects the effect of the electric field E and

can be calculated as given in [21].

VE behaves as an electromotive force added to the mem-

brane. VE does not change the basic structure of ML

model but to change the anti-electromotive forces of calcium

current, potassium current and leak current. According to

control theory, the introduction of VE could be regarded as

a disturbance applied to the original system and its dynamic

performance under disturbance should be investigated.

Throughout this paper, except for Iext and VE, all the other

parameters involved in ML model are fixed as values for a

class I neuron model as given in [22].

III. DEFINITION  DETECTION OF BIFURCATIONS

A bifurcation is a change of qualitative behavior of a

dynamical system at special values of the parameters. The

codimension of a bifurcation is the minimum dimension of

a parameter space in which the bifurcation may happen in a

persistent way [23].

A. Codimension one bifurcations

Hopf bifurcation (H) A continuous fundamental path

of an equilibrium point loses its stability as it intersects a

secondary path of a periodic solution. The location of a

Hopf bifurcation on the equilibrium point is characterized

by a complex conjugate pair of linear eigenvalues of the

Jacobian matrix whose real part passes through zero. When

the secondary path is stable, it is the supercritical Hopf

bifurcation (sH). Conversely, when the secondary path is

unstable, it is the subcritical Hopf bifurcation (uH) .

Saddle-node bifurcation (sn) Two equilibrium points

coalesce and disappear. At this bifurcation point, the Jacobian

matrix of the equations at the equilibrium point has a zero

eigenvalue.

Double cycle or saddle-node of cycles (dc). Two periodic

solutions with finite amplitude coalesce and disappear.

saddle loop or homoclinic bifurcation (sl) The amplitude

of a periodic orbit may increase until it captures a saddle

point and disappears its period tending to infinity as ap-

proaching bifurcation point.

B. Codimension two bifurcations

Three types of codimension two bifurcations as follows

are considered.

Cusp (c) Three equilibrium points coalesce into one.

Takens-Bogdanov bifurcation (TB) The Jacobian matrix

of the equations at the equilibrium point has two zero eigen-

values. On a two dimensional bifurcation diagram (2BD),

TB locates on the sn curve, and it is the terminus of the

homoclinic and the Hopf bifurcation curves tangent to the

sn curve at this point.

Degenerate Hopf bifurcation (dH) The stability of the

periodic solution which bifurcates at the Hopf bifurcation

point changes. A dc curve is terminated at this point on a

2BD.

In this study, Numerical computations for the bifurcation

diagrams are conducted using MATCONT, a new MATLAB

continuation package for the study of parameterized ODE

systems [24]. Matcont can detect several bifurcation points

automatically and can trace both stable and unstable branches

of equilibria and periodic solutions. Numerical integration

of the system equations for obtaining the trajectories was

conducted in MATLAB using ode45.

IV. RESULTS AND ANALYSIS

In this section, first we give a global structure of bifurca-

tions in Iext − VE two dimensinal parameter space, and then

we analyze the bifurcations about Iext for different values

of VE to show how the electric field affects the neuronal

excitability and spiking properties.

Fig. 1 shows the two-parameter bifurcation diagram of the

modified ML model. The abscissa and the ordinate are Iext

and VE, respectively. Hopf (uH1, uH2, sH), saddle-node (sn1,

sn2), double cycles (dc1, dc2) and homoclinic bifurcation

(sl2) curves are displayed as solid, dash-dotted, dashed and

dotted lines, respectively. By these curves, Fig. 1 is then

partitioned into six qualitatively different regions (A-F).

Schematic phase portraits for each region are given. Stable

equilibrium points are shown as solid dots, unstable ones

are crosses, stable limit cycles are closed curves with solid

lines, and unstable periodic orbits are dashed lines. Different

phase portraits indicate qualitatively different behaviors of

ML model.

In region A, the unique steady state is an stable equi-

librium point (EP), and the ML behaves as an excitable

membrane. In B, a periodic solution, i.e. a limit cycle (LC),

is the unique stable steady state and an unstable equilibrium
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Fig. 1. Bifurcation diagram of ML model in Iext − VE parameter
space

point exist within it. In C, three equilibrium points coexist

and two of them are stable, i.e. bistability of equilibrium

points. In D, two stable attractors, an equilibrium point and

a periodic solution, coexist with one unstable limit cycle,

i.e. bistability of an equilibrium point and a limit cycle. In

E, three equilibrium points coexist but only one of them is

stable. Region F is another bistability region of equilibrium

points, but there is also an unstable limit cycle. The typical

responses of phase portraits for different regions are shown

in Fig. 2.

To illustrate how the electric field affects the excitability

of neurons, we calculate bifurcation diagram about Iext for

different values of VE, and show that the single parameter VE

can control the transitions among four different excitability

and spiking properties.

For VE = 0, the ML system shows a Class I excitability

and spiking feature by varying Iext. As shown in Fig. 3a, the

existence of snsLC (saddle-node on limit cycle) is essential

for the occurrence of Class I excitability and spiking, and

the bifurcating state shows zero frequency response. For

VE = 45, the transition between excitability and spiking

is supercritical Hopf (sH) bifurcation, and the bifurcating

state holds a certain nonzero frequency. So the ML neuron

behaves Class II excitability and spiking (Fig. 3b). When

VE is fixed at the value of 32, we can observe Class II

excitability and Class I spiking in Eq. (1). As shown in

Fig. 3c, as Iext increases, the system state keeps silent and

moves into the narrow region G since the sl bifurcation

does not affect the existing equilibrium point. With more

increment of Iext, the stable equilibrium disappears via sn,

then we have spiking with a nonzero frequency value in

region B. This process results in Class II excitability. In

the inverse process, since the spiking is not related with the

saddle-node bifurcation of equilibrium points, the frequency

of the spiking vanishes gradually as the system approaches

the sl point. Then the spiking is terminated and we have

a quiescent state. Hence a Class II excitable and Class I

spiking process is demonstrated. Finally when VE = 36, the

ML model shows Class II excitability and Class II spiking

with the bistability. The uH and the dc bifurcations form a

narrow region (region D) where bistability occurs.
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Fig. 2. Examples of various phase portraits in regions A-F in Fig. 1.
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Fig. 3. Bifurcation diagram of ML model about Iext with (a) VE =

0mV, (b) VE = 45mV, (c) VE = 32mV and (d) VE = 36mV. left:
extremum of V , right: frequency. The neuron exhibits (a) Class I
excitability and Class I spiking, (b) Class II excitability and Class
II spiking without the bistability. (c) Class 2 excitability and Class
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bistability, respectively.
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V. CONCLUSIONS

The aim of this paper is to investigate the effects of exter-

nal DC electric field on the neuro-computational properties

in context of ML model using bifurcation analysis. The

obtained bifurcation curves partition the two dimensional

Iext − VE parameter space into different regions according

to qualitatively different firing patterns of the ML neuron.

The stimulus parameters can be quantified by the various

neuronal behaviors. On the one hand, one can interpret

neuron activity as a representation of the parameter values.

On the other hand, one can determine the parameter values

to make the neuron elicit certain specific action potential

sequences, which is significant in neuron control. By varying

the single electric field parameter VE, we also obtain four

primary neuronal excitability and spiking features which

are associated with different bifurcation mechanism. The

results give some hints for research on interference between

electromagnetic exposure and biological systems.
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