
  

  

Abstract—The correlation dimension was used in this paper 
as a quantifier to describe the chaotic behavior of sleep EEG 
recorded from the hippocampus of adult rats during vigilance 
states of quiet-waking, slow-wave sleep, and REM sleep. A 
modified Grassberger-Procaccia method was implemented to 
compute the correlation integral using a Euclidean distance 
normalized by the embedding dimension. The performance of 
the correlation dimension as a measure to characterize the 
sleep EEG was compared to the quantitative measures derived 
from linear autoregressive models. Even though linear and 
chaotic measures are based on completely different theories 
and concepts, our experimental results have indicated them 
both effective in capturing the characteristic differences of 
sleep EEG during various states. The preliminary results have 
also shown the correlation dimension being particularly 
effective in emphasizing the differences in regard to the chaotic 
behavior between the EEG activity in SWS and QW and REM 
sleep.   

I. INTRODUCTION 
ONLINEAR and chaotic signal analysis techniques [1]-
[3] have  gained much popularity recently in many 

applications because of its ability to gain valuable 
information, otherwise impossible with traditional linear 
analysis approaches [4]-[5]. Nonlinear and chaotic behavior 
commonly appears in a wide variety of physical signals, 
including biological events [6]-[11]. Nonlinear dynamics 
studies open a door to new theoretical and conceptual 
interpretations and more understanding of many complex 
systems of interest [1]-[3]. Application examples of 
nonlinear dynamics and chaos are abundant in the literature 
[6]-[11]. Although nonlinear and chaotic analysis tools are 
equipped with unique signal processing advantages not 
shared by traditional linear analysis approaches, they are still 
relatively new in concept and demand a much steeper 
learning curve and heavy computation. 
 In EEG analysis [12], power spectral analysis [13]-[15] 
has been frequently utilized to provide valuable quantitative 
measures such as the peak frequency and the bandwidth. 
Sleep consists of different vigilance states; each of these 
states is distinct in regard to the correlation between EEG 
activity and the underlying neuro-anatomical and 
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neurochemical mechanism [14]. Quantitative measures 
derived from spectral analysis are available in the literature 
[4]-[5], [15]-[17]. While the answer to the question, 
“Whether there exists hidden and crucial information of the 
EEG activity that cannot be retrieved, or ignored, by the 
linear spectral analysis?” is a straightforward “yes,” a 
remaining, not yet fully answered, question that also stirs up 
more research endeavors is “How?”  

Linear model based signal processing approaches have 
proven computationally efficient and are able to extract 
valuable information hidden in data measurements. 
However, the fundamental assumption of all linear models 
excludes the possibility of observing any nonlinear behavior 
hidden within. Nonlinear model based signal processing 
approaches have added new understanding with regard to the 
composition of the EEG [5], [16]-[17]. On the other hand, a 
common premise is that certain complex nonlinear behaviors 
such as the strange attractor can be effectively delineated in 
the phase space [10]. The correlation dimension is one such 
quantifier measure of chaos that examines the geometric 
aspect of strange attractors and provides an estimate of the 
fractal microstructure dimension and the Grassberger and 
Procaccia (GP) method was suggested [18].  

In this paper, the correlation dimension was used to 
characterize the hippocampal EEG measured from adult rats 
during the vigilance states of quiet-waking (QW), slow-
wave sleep (SWS) and REM sleep. In particular, a modified 
GP method was implemented to compute the correlation 
integrals C(τ) for varying embedding dimensions. By 
definition, the correlation integral function C(τ) is not a 
function of the embedding dimension. It was shown in [19] 
that correlation integrals estimated by mGP were less 
sensitive to the varying embedding dimension.  

To assess the performance of the chaotic measure of 
correlation dimension in EEG analysis, results obtained from 
a linear model analysis were compared. The power spectra 
of QW, SWS, and REM sleep EEG were also computed 
through autoregressive (AR) modeling; the measures of the 
peak frequency and associated bandwidth were estimated 
using a second order AR model [5]. Thirty two hippocampal 
EEG epochs were used for each vigilance state. The 
statistics of both linear and nonlinear measures were 
calculated for comparison. The results show that both linear 
and chaotic measures are effective in characterizing the 
behavioral difference from two conceptually different angles 
of the EEG activities during different vigilance states. 
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II. METHODS 

A. Correlation Dimension Estimation 
In chaotic studies, the phase space trajectory is a 

graphical display of the evolution of a dynamic system over 
time. Some properties of the dynamical system can be 
accurately derived from the trajectory. One frequently 
adopted measure from the trajectory of a strange attractor is 
the fractal dimension. Grassberger and Procaccia [18] 
recognized that the computation of the fractal dimension is 
non-trivial and proposed an alternative that only requires the 
Euclidean distances from a point being computed. Their 
approach led to the formula of the correlation integral 
described below, 
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where ||.|| represents the Euclidean distance between two 
different state vectors reconstructed in phase space using 
Takens' time-delay embedding method shown in (2) and Θ is 
the Heaviside function.  
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L is the delay time (lag) and m is the embedding dimension. 
The value of L is often chosen to produce a state vector with 
independent or uncorrelated entries. Computation of C(τ) in 
(1) is to be repeated for an increasing radius τ by small steps 
(∆τ) until C(τ) converges. The computational load for C(τ) is 
very heavy and will increase if smaller step sizes are used or 
a larger range of  τ is to be covered. 

Because of the time-delay embedding in (2), the 
Euclidean distance value between two state vectors also 
increases with an increasing embedding dimension (m). To 
compensate for this undesired situation caused by a varying 
embedding dimension, a modified G-P method  (mGP) as 
proposed to normalize the calculated Euclidean distance by 
the embedding dimension as follows, 
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Through the normalization, correlation integral C(τ) is 
expected to be less sensitive to the varying embedding 
dimension. It should be noted that there are norms other than 
the Euclidean norm, such as the maximum norm (or uniform 
norm) that can be used in (2) to measure the distance 
between two different state vectors.  

The correlation dimension (D2) is typically estimated as 
the slope of an identified linear scaling region in the log C(τ)  
versus  log(τ)  plot [1], [5], [12], i.e., 
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We report in this paper the results of using this normalized 
Euclidean norm in (3) for the computation of C(τ) and the 
estimation of D2. 
 

B. Power Spectrum Using AR modeling 
The Burg AR modeling algorithm [4] was used in this 

paper to calculate AR model coefficients and power spectra 
for all vigilance states. The Burg method calculates the AR 
coefficients by minimizing the forward and backward 
prediction errors. In this paper, we used a second order AR 
model to extract two quantitative features of a power 
spectrum, i.e., the peak frequency and the bandwidth of an 
underlying EEG epoch. The two AR model coefficients 
{a2,a1} were used to determine a pair of complex conjugate 
poles and the corresponding frequency. The peak frequency  
(Hertz) was determined by the sampling frequency (fs) as 
follows [5] 
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The bandwidth at the peak frequency of the AR model based 
power spectrum is determined by the magnitude of the pole 
location. Burg’s algorithm generates stable filters and the 
reflection coefficient (a2) is less than one. The AR power 
spectrum has a very narrow bandwidth when the AR model 
poles are near the unit circle. One can use the magnitude of 
pole location to gauge the bandwidth of the peak frequency. 

III. RESULTS AND DISCUSSION 
The EEG epochs examined here were recorded from rats 

of 45 days of age from the hippocampus. The EEG activity 
was recorded for several hours. Thirty two 8-second epochs 

 
Fig.1 Hippocampal EEG during three vigilance states: 
(a) quiet-waking, (b) slow-wave sleep, (c) REM sleep. 
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were visually selected for QW, SWS, and REM sleep. An 
example of an 8-second EEG epoch of each vigilance state is 
shown in Fig.1. A second order AR model was used for each 
8-sec epoch. The resultant AR model coefficients were used 
to estimate the AR power spectrum and extract the measures 
of peak frequency and associated bandwidth. Power spectra 
of 32 8-sec epochs of QW, SWS, and REM sleep are 
displayed in Fig.2. 

The overlapped power spectra of the hippocampal EEG 
during REM sleep (Fig.2c) show a narrower bandwidth 
centered at a relatively higher peak frequency (near 7.5 Hz) 
than QW and SWS. The peak frequencies of QW and SWS 
are lower (5.8 and 6.2 Hz, respectively) than REM sleep, 
and the spread of the energy at peak frequencies are also 
broader than REM sleep. The linear measures derived from 
AR modeling are summarized in Table I. The differences 
between means, using a two-tailed student’s t-test, lead to p-

values of 0.0412 for QW vs. SWS, and <0.0001 for QW vs. 
REM and SWS vs. REM, respectively. 

The hippocampal EEG epochs of the three vigilance states 
were used to compute the correlation integrals C(τ) in (1) 
using the modified Euclidean distance adjusted by the 
embedding dimension in (3). Without loss of generality, 
correlation integrals computed using three different 
embedding dimensions (m=4, 6, and 8) were calculated and 
are shown in Fig.3.  To assist comparison, correlation 
integrals of different embedding dimensions in all three 
vigilance states are displayed using the same axis range.  
The differences of C(τ) between SWS and REM are 
apparent―correlation integrals of REM converge to zero 
with significantly lower slopes than SWS.   

 
Fig.2 AR power spectra of hippocampal EEG during (a) 
quiet-waking, (b) slow-wave sleep, (c) REM sleep. 

TABLE I 
LINEAR AND NONLINEAR MEASURES OF HIPPOCAMPAL EEG DURING 

THREE VIGILANCE STATES 

Vigilance 
State Measures Mean ± STD 

QW Freq 5.873±0.754 
  Pole 0.856±0.025 
 D2 (m=6) 2.901±0.430 
 D2 (m=8) 3.495±0.597 
   
SWS Freq 6.267±0.701 
  Pole 0.866±0.028 
 D2 (m=6) 4.106±0.312 
 D2 (m=8) 4.684±0.453 
   
REM Freq 7.517±0.561 
  Pole 0.913±0.012 
 D2 (m=6) 2.524±0.337 
 D2 (m=8) 3.009±0.432 

1Freq is the dominant frequency in the EEG epoch. 2Pole represents the 
pole magnitude of AR model. 3D2 is the correlation dimension estimate. 

 
Fig.3 Correlation integrals of hippocampal EEG during 
(a) quiet-waking, (b) slow-wave sleep, (c) REM sleep. 

 
Fig.4 Linear scaling regions of correlation integrals: (a) 
quiet-waking, (b) slow-wave sleep, (c) REM sleep. 
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Figure 4 depicts a chosen linear scaling region, log(τ) in 

[1.35, 1.5],  for all vigilance states. The differences of C(τ) 
between SWS and REM (or QW) sleep are more prominent. 
The slopes for m=4, 6, and 8 in SWS (Fig.4b) are steeper 
than REM (Fig.4c) and QW (Fig.4a).  In addition, C(τ) 
estimates during REM sleep are clustered tighter than QW 
and SWS. Slopes of log C(τ) versus log τ were computed for 
the chosen linear scaling region. Correlation dimension 
estimates of QW, SWS, and REM sleep EEG are shown in 
Fig.5. 
 Correlation dimension (D2) estimates in QW (Fig.5a) and 
REM (Fig.5c) sleep are much smaller than those of SWS 
(Fig.5b). The statistics of nonlinear measures are given in 
Table I. It is clear from the numbers in D2 (m=6 and m=8) 
that SWS is statistically different from QW and REM sleep. 
The differences between means of D2 in SWS and QW (or 
REM) lead to p-values <0.0001 for both m=6 and m=8 in a 
two-tailed student’s t-test. Correlation dimension estimates 
are slightly increased when the embedding dimension was 
changed from m=6 to m=8 in all vigilance states. We found 
that, if different scaling regions had been selected for 
different embedding dimensions, correlation dimension 
estimates became closer.  

IV. CONCLUSION 
Linear measures derived from AR modeling and power 

spectral analysis were compared to the chaotic measure of 
correlation dimension in characterizing the EEG activity of 
adult rats during the vigilance states of QW, SWS and REM 
sleep. The results have suggested that the correlation 
dimension measure is a promising quantifier in EEG 
analysis and can better reveal the differences between SWS 
and REM sleep EEG from a different perspective than linear 
approaches. The following observations were noted through 
our study: 

1. Linear measures derived from AR modeling can 
effectively delineate the peak frequency of each 
vigilance state. 

2. The bandwidth of the peak frequency is characterized 
by AR model pole’s closeness to the unit circle. 

3. The correlation dimension derived from the trajectory of 
state vectors in the phase space provides a different 
perspective and effective means to characterize the 
differences between SWS and QW or REM sleep. 
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Fig.5 Correlation dimension (D2) estimates: (a) quiet-
waking, (b) slow-wave sleep, (c) REM sleep. 
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