
  

  

Abstract—An adaptive internal model control strategy is 
introduced into the robust complete synchronization of two 
gap-junction coupled FizHugh-Nagumo (FHN) neurons under 
uncertain heterogeneous disturbances which satisfies some 
general immersion condition. The synchronization problem can 
be converted into a robust stabilization problem of an 
augmented system consisting of the original given plants and an 
internal model. An adaptive law is employed against uncertain 
disturbances to make the estimate of internal model to converge 
to the ideal one. Following a proper state-feedback stabilizer is 
designed to guarantee the asymptotic stability of the resulting 
closed-loop system achieved for some appointed initial condition 
in the state space and for all possible values of the uncertain 
parameter vector. Finally, the simulation results demonstrate 
the validity of the proposed method. 

I. INTRODUCTION 

number of experimental studies have revealed the 
presence of electrical coupling via gap junctions in the 

mammalian brain [1-3]. Indeed, in many cases, electrical 
interactions via gap junctions have been related to observed 
synchrony in the dynamics of the underlying network. 
Recently, many theoretical studies have focused on the 
problem of to what extent the degree of synchronization can 
be controlled through the strength of the inter-oscillator 
coupling [4-5]. However, it has been argued that the 
transitions from the desynchronized state to the synchronized 
state are mediated not only by varying the coupling strength 
but also by changing the external stimulus such as man-made 
control applied to neurons. It is well known that the complete 
synchronization (CS) can be observed only in coupled 
systems with identical elements. In contrast, the exertion of 
proper external control is helpful to realize CS of the coupled 
neurons in present of uncertain disturbances. Theoretically, 
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many nonlinear control methods, such as backstepping 
control [6], adaptive control [7], feedback control [8], sliding 
mode control [9] and internal model control [10] have been 
developed to achieve CS of the coupled living neurons.  

Specially in [10], we have firstly introduced the internal 
model idea into the synchronization of two uncoupled 
homogeneous FHN neurons under periodical disturbances 
with uncertain amplitudes. However, the precise oscillating 
frequencies of disturbances must be known to be used for 
constructing the exact immersion system. In this note, this 
restriction is weakened by admitting periodical disturbance 
with not only uncertain amplitudes but also uncertain 
oscillating frequencies in the presence of two electrical 
coupling FHN neurons. Firstly, we employ an estimate of 
internal model to substitute the ideal one. And a state 
feedback stabilizer is proposed for the augmented system 
composed by the original coupled systems and the estimative 
internal model. Then, based on Lyapunov stability analysis, 
the adaptive tuning law is designed to guarantee estimative 
internal model to converge well to the ideal one. Finally, the 
simulation results are given to demonstrate the validity of the 
proposed method. 

II. THE PROBLEM STATEMENT  

A. Description of a master-slave system 

We define a master-slave system with two electrical 
coupling homogeneous FHN neurons as 
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where (Xi,Yi) are the state variables and di(t) are external 
uncertain disturbances of the master and slave system (i=M, 
S). g≥0 is the unknown inter-coupling strength; The 
master-slaver system is homogeneous with same unknown 
parameters b and r; u is the exerting control force which 
makes the dynamic behavior of slave one perfectly tracking 
that of master one. Here, we consider di(t) are periodic 
perturbations with both unknown amplitude and frequencies. 
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B. Error dynamic system 

Let eX=XS-XM and eY=YS-YM, then the error dynamical 
system of (1) can be described as 

( ) ( ), , ,X X Y M

Y X

e f e e X r d t u

e be

= − +

=
(2) 

where 
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d(t)= dM(t)-dS(t). So our purpose is to solve the problem of 
robust CS of (1) by exerting u(t) when dM(t)≠dS(t). 

III. DESIGN OF ROBUST FEEDBACK STABILIZER WITH 

ESTIMATIVE INTERNAL MODEL 

Utilizing the new state variable z1=eY and 2 Y Xz e be= = , 

the error dynamic system (2) can be feedback linearized as 
the following system 

( ) ( )
1 2
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where ( ) ( )1 2, , , , , ,z M X Y Mf z z X r f e e X r= . Rewrite (4) as 

                    ( ) ( )( )1 2, , ,z Mbf z z X r bd t bu= + − +z Az B (4) 

with z=[z1, z2]
T, A=[0,1; 0,0] and B=[0, 1]T. 

A. Ideal linear internal model of coupled FHN neurons 

From (2), it can be verified that fz(0,0,XM,r)=f(0,0,XM,r)=0 
so that steady controller of (3) is ( ) ( )u t d t= . To construct a 

steady generator for (4), we introduce an immersion 
Assumption with regard to d(t).  
Assumption 1: There exists a number q ∈ N  and a set of real 

numbers c0, c1,…, cq-1, independent of the unknown system 
parameters of (1), such that d(t) satisfies 
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distinct roots on the imaginary axis. 
Remark 1: In [10], we have solve the exactly known case for 
c0, c1,…, cq-1  by construct an ideal internal model. Here we 
suppose that these numbers may be unknown and an adaptive 
internal model is constructed in the following. By defining 
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and 1[1,0, ,0] q×= ∈Γ R , Assumption 1 implies existence of 

a linear steady generator of (4) with output d(t) as 

( )d t

=

=

σ Sσ
Γσ

                                (6) 

Lemma 1: Given any known Hurwitz matrix q q×∈σA R  and 

any vector q∈J R  such that the pair ( ),σA J  is controllable, 

the Sylvester equation − =σ σ σM S A M JΓ  has a unique 

solution q q×∈σM R , which is non singular. 

It can be seen that σM  is unknown if S is unknown. Indeed 
1− = +σ σ σ σM SM A JK , where 1−=σ σK ΓM . Therefore, S is 

similar to +σ σA JK . Note that, since ( ),σA J  is controllable, 

and J has just one column, the row vector σK  is precisely the 

unique solution to the problem of assigning the poles of S to 
+σ σA JK . Thus, (6) can be immersed into the following 

linear autonomous system 

( )
y

= +

=
σ σ

σ

η A JK η
K η

(7) 

where q∈η R  and σK  may be unkown. 

Remark 2: Specifically, the immersion map from (6) to (7) is 
given by = ση M σ , which satisfies ( )d t = σK η . This 

relation plays a crucial role in the sequel for adaptive internal 
model, as relation ( )d t = Γσ  does in the non-adaptive case. 

 According to the canonical internal model formulated in (9), 
we choose a linear internal model of coupled FHN neurons 
system (1) as the form 

( ) ( ),v z t= σ σξ A + JK ξ + J (8) 

where q∈ξ R , v(z,t) is called added disturbance of control 

and chosen to satisfy that v(z,t)=0, as we will soon show. 

B. Estimative internal model with state-feedback stabilizer 

Owing to σK  may unknown, the ideal internal model (8) 

for the coupled system (1) may not be used directly to 
construct the controller. Thus, we need to employ a method to 
asymptotically estimate the ideal internal model (8) as well. 

We replace σK  in (8) with an estimates ˆ
σK , governed by an 

adaptive tuning law of the kind ( )ˆ , az=σK Ψ ξ  which will be 

shown next. Thus, the estimate  (8) is obtained as 

( ) ( )ˆ ,v z t= σ σξ A + JK ξ + J (9) 

Here we stress that ξ  is available for feedback. And we 

choose the augmented error of the form 2 1a az z k z= + , where 

ka>0 is a number yet to be determined. Under this new state 
variable, (4) can be translated as 

( ) ( )
1 1
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z k z z

z f z z X r k b u u
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where ( ) ( )1 1 2 2, , , , , , ,za a M a z M af z z X r k bf z z X r k z= + . It is 

easy to verify that ( )0,0, , , 0za M af X r k = . Then, we design 

the steady feedback stabilizer for the augmented system 
composed by (9) and (10) as the form 

( )ˆ ,u v z t= +σK ξ (11) 
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with ( ), v av z t k z= − , where kv>0 is adjustable parameter.  

C. Asymptotic stability analysis of the closed-loop system 
and adaptive regulation 

Defining the new error variable 
1

az
b

= − −Φ ξ η J  and 

ˆ= −σ σ σK K K , the resulting closed-loop can be viewed as 
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which has a zero dynamics given by 
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As ( )0,0, , , 0za M af X r k =  and σA  is Hurwitz, the result 

holds that the cascade system (13) is uniformly semi-global 
asymptotically stable in parameter ka. We define a Lyapunov 

function ( ) 2
1 1 1

1
,

2

def
TV z z= +ΦΦ Φ P Φ  where the symmetric 

positive definite matrices ΦP  is the solution of 
T+ = −Φ Φ Φ ΦP A A P I . And define the compact set 
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Owing to ( )1,0, , ,za M af z X r k  is locally Lipschitz, According 

to (14), for any c1>0, there exist some positive design 
parameter ak∗  such that ( )1 1, 0V z ≤Φ , which guarantees that 

the state feedback ( ), v av z t k z= −  uniformly asymptotically 

stabilizes the equilibrium (Ф,z1,za)=(0,0,0) of (12) in the case 

of 0=σK . The positive define, locally quadratic function 
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exists a positive constant vk∗  and some positive function λ(·), 
locally quadratic around the origin, such that, if kv is chosen 
greater than vk∗ , the derivative of ( )2 1, , aV z zΦ  satisfies 
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Consider the Lyapunov function candidate 
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for all ( )1, , ,az z σΦ K  in 
3cΩ . Obviously choose 

( )ˆ , a az zδ= = − T
σK Ψ ξ ξ  

such that ( ) ( )( )1 1, , , , ,a aV z z z zλ≤ −σΦ K Φ , which implies 

that asymptotic regulation is achieved. 

IV. SIMULATION  RESULTS 

 

 
Fig. 1.  State trajectories of Master and slave FHN neurons: (a) 
Phase 1 to 3 without external control; (b) Phase 4 to 6 with 
exerting the proposed controller 
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In this section, we consider the external disturbances di as 
the form di=(Ai/ωi)cos(ωit) with the uncertain amplitudes Ai 
and uncertain oscillating frequency ωi=2πfi. It can be easy to 
demonstrate that d(t) satisfies Assumption 1 i.e. there exist 
following constants: q=4, c0=ωM

2ωS
2, c1=0, c2=ωM

2+ωS
2 and 

c3=0. Thus a linear steady generator can be written as (6) with 
S=[0,1,0,0;0,0,1,0;0,0,0,1;-c0,0,-c2,0] and Г=[1,0,0,0]. In 
whole simulations, the fixed control action is implemented 
with the following parameters: σA  is Hurwitz with the poles 

at (-1,-2±j,-3); J=[0,0,0,1]T; choosing proper control gains as 
ka=0.2 and kv=200; setting adaptive scale parameter δ=5×106. 
The initial simulation conditions are set as: (XM(0), 
YM(0))=(1,2); (XS(0), YS(0))=(0,0); ξ(0)=[0,0,0,0]T; 
ˆ (0) [0,0,0,0]=σK ; r=10 and b=1. The whole simulation is 

divided into the six phases: (1) Phase 1(0 to 400s): setting 
g=0.03, fM=fS=127.1Hz and AM=AS=0.1, without exerting 
external control; (2) Phase 2(400 to 800s): increasing g from 
0.03 to 0.1; (3) Phase 3(800 to 1200s): changing external 
perturbations as fM=127Hz, fS=700Hz, AM=0.3, AS=2 and 
increasing g again from 0.1 to 1; (4) Phase 4(1200 to 1600s): 
introducing the proposed internal model control and turning 
the adaptation on; (5)Phase 5(1600 to 2000s): turning the 
adaptation off; (6)Phase 6(2000 to 2400s): changing external 
perturbation of the slave system again as fS=530Hz and 
AS=0.8, and turning the adaptation on. 
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Fig. 2.  Evolution of the estimates of Kσ in Phase 4 to 6 
(Note: to verify the convergence of the estimates of Kσ, here 
we manually compute Kσ=[2.683,32,4.019,8] for Phase 4 and 
5, and Kσ=[7.939,32,12.274,8] for Phase 6 respectively.) 

Simulation results are shown in Fig. 1, where (a)  and (b) 
represent the case without external control from phase 1 to 3 
and the case with control from phase 4 to 6 respectively. At 
first, the proposed controller is disconnected, where in Phase 
1 different initial states result in the asynchronous behaviors 
with the weaker inter-coupling strength g=0.03 under 
homogeneous external disturbances, and the synchronization 
states are obtained by increasing g from 0.03 to 0.1 in Phase 2, 
and when there exist heterogeneous perturbations in Phase 3, 
even though the value of g is increased to ten times of that in 
Phase 2, the synchronization regulation can not be held on. 
We noticed a remarkable steady error until the adaptive 
internal model controller is connected in Phase 4. And Fig. 2 

shows the evolution of the estimates ˆ
σK  from Phase 4 to 6. 

At the beginning of Phase 5, the adaptation is removed. 
Remarkably, no error arises, which shows that the adaptive 
internal model has been tuned to the “ideal” one. Following, 
at the beginning of Phase 6, when we change the external 
perturbation of the slaver system again, it can be observed 
that zero steady state error can be maintained well by turning 
the adaptation on at the same time, as the internal model is 
tuned again to the another “ideal” one shown in Fig. 2. 

V. CONCLUSION 

Our previous studies in [10] need the complete knowledge 
of the frequencies of external disturbances. Here we solved 
the problem of robust CS for two electrically inter-coupling 
homogeneous FHN neurons under external heterogeneous 
disturbances with both unknown amplitudes and frequencies 
using the adaptive internal model control strategy. Under 
some proper Assumption about the external perturbations, the 
linear ideal internal model can be constructed for the original 
system. Then, a state feedback stabilizer is designed for the 
augmented system composed of the original system and an 
estimative internal model whose convergence to the ideal one 
is guaranteed by an adaptive tuning law. 
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