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Abstract— Approximate Entropy (ApEn) and Sample En-
tropy (SampEn) have proven to be a valuable analyzing tool for
a number of physiological signals. However, the characterization
of these metrics is still lacking. We applied ApEn and SampEn
to body temperature time series recorded from patients in
critical state. This study was aimed at finding the optimal
analytical configuration to best distinguish between survivor
and non-survivor records, and at gaining additional insight into
the characterization of such tools. A statistical analysis of the
results was conducted to support the parameter and metric
selection criteria for this type of physiological signal.

I. INTRODUCTION

Approximate Entropy (ApEn) and Sample Entropy (Sam-

pEn) are time series regularity measures that have been

used in many biomedical fields such as neonatology [1],

neurology [2], genetics [3], geriatrics [4], cardiology [5] and

endocrinology [6], to name just a few.

ApEn was introduced by Pincus [7] to overcome the

entropy computation problems posed by the finite length

of real time series or the hypotheses about the generating

system. More recently, Richman and Moorman [8] developed

an improved regularity metric, SampEn, in order to reduce

the inconsistencies and bias of ApEn.

Both ApEn and SampEn require the specification of two

parameters, the threshold tolerance r, and the embedding

dimension m. Previous experimental studies recommend to

select m = 2 and r in the range 0.1 to 0.25 times the standard

deviation of the time series [8]. However, the regularity

measurement may depend on the selection of the parameters

in such a way that different results can be obtained for time

series of the same regularity, or the same results can be

obtained for time series of different regularity.
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In the last few years, it has become increasingly evident

that characterization and interpretation of time series regular-

ity measures ([9]–[11]) is of paramount importance to assure

results consistency, specially in the context of biomedical

signal processing. As a consequence, some guidelines have

been published regarding the selection of parameter r [12],

[13], the effect of data length [14], [15], the influence of

signal characteristics [16], or the influence of a number of

parameters [17].

In this regard, the aim of our study was also to characterize

ApEn and SampEn. In contrast to previous works, we applied

them to a new type of physiological signal in terms of

entropy analysis, body temperature records.

Measurement of body temperature along with other vital

signals is common practice during hospitalization. Normal

body temperature is considered to be 37 °C, although a wide

variation may be seen.

For clinical purposes, body temperature has been tradi-

tionally used as a marker for fever. A patient is considered

febrile if the oral temperature exceeds 37.5 °C. However, this

classical use of discrete temperature readings does not exploit

the additional clinical information embedded in temperature

records, as shown in [18]. Besides, in some patients the clin-

ical state might not be recognized because their temperature

does not raise above the set point.

Several recent clinical studies emphasized the importance

of continuous body temperature monitoring for other appli-

cations, such as stroke prognosis [19], patient survival in

critical care units [18] and neurologic outcome after cardiac

arrest [20].

We used records from patients at an intensive care unit,

whose body temperature was recorded at one sample every

10 minutes during several days. The records were separated

in two classes: those belonging to patients that survived and

those belonging to those that did not. ApEn and SampEn

were computed for each record, for a set of r and m values,

and an analysis of variance was carried out to delineate the

best parameter and metric setting.

II. METHODS

In this section we will describe the algorithms to compute

both ApEn and SampEn. Given a discrete time input data

series x[n] of length N (featuring a temperature record), and

setting the value for parameters m, and r, the computation

is as follows:
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A. ApEn

Draw a data series pattern of length m:

xm(i) = {x[i], x[i + 1], . . . , x[i + m − 1]},

namely, m refers to the number of consecutive temperature

measures assumed to form a possible repetitive pattern within

x[n], and starting at sample x[i].
The distance between two generic patterns xm(i) and

xm(j) is given by:

d (xm (i) , xm(j)) = max (|x [i + k] − x [j + k]|) , 1 ≤ k ≤ m

(1)

The distance threshold r determines if xm(i) and xm(j)
can be considered similar when d (xm (i) , xm(j)) ≤
r. Given the set of all possible patterns of length

m, (xm(1), xm(2), . . . , xm(N − m + 1)), it is defined:

Cr,m(i) =
ki,m(r)

N − m + 1
(2)

where kr,m(i) is the number of patterns xm(j) that are

similar to xm(i) according to the distance threshold r. Hence,

Cr,m(i) is the fraction of patterns of length m starting at

j, 1 ≤ j ≤ N − m + 1 whose distance to pattern starting at

i, is below the threshold r, that is, they are considered to be

similar to pattern xm(i). This fraction is computed for each

pattern, and then another quantity can be defined as:

φm(r) = 1
N−m+1

∑N−m+1
i=1 log Cr,m(i).

The computation of the ApEn of a temperature epoch x[n],
ApEn(m, r) is then given by:

ApEn(m, r) =
[

φm(r) − φm+1(r)
]

(3)

B. SampEn

1) Take m vectors Xm(1),Xm(2), . . . , Xm(N −m+1),
defined as Xm(i) = [x[i], x[i+1], . . . , x[i+m−1]], for

1 ≤ i ≤ N −m + 1. These vectors are m consecutive

values of x, commencing at the ith sample.

2) The distance between vectors Xm(i) and Xm(j),
d[Xm(i),Xm(j)] is defined as:

d[Xm(i),Xm(j)] = max(|x[i + k] − x[j + k]|) (4)

For a given Xm(i), count the number of j(1 ≤ j ≤
N − m, j �= i), such that d[Xm(i),Xm(j)] ≤ r. This

number is denoted as Bi. For 1 ≤ i ≤ N − m,

two new values are defined and computed, Bm
i =

1

N − m − 1
Bi and Bm(r) =

1

N − m

N−m
∑

i=1

Bm
i (r).

3) Length is increased to m = m + 1, and previous steps

are repeated to obtain the counterpart of B with this

new value of m, Am
i =

1

N − m − 1
Ai and Am(r) =

1

N − m

N−m
∑

i=1

Am
i (r), where Bm is the probability that

two sequences coincide for m points, and Am is the

probability that coincide for m + 1 points.

TABLE I

ANOVA TABLE FOR APEN

Source SS DF MS F p

Class 0,382303 1 0,382303 25,41 0,0000
m 1,6831 3 0,561032 37,29 0,0000
r 37,245 8 4,65562 309,42 0,0000

Class–m 0,0119185 3 0,00397283 0,26 0,8513
Class–r 0,194853 8 0,0243566 1,62 0,1148

m–r 4,32099 24 0,180041 11,97 0,0000
Class–m–r 0,0417027 24 0,00173761 0,12 1,0000

TABLE II

ANOVA TABLE FOR SAMPEN

Source SS DF MS F p

Class 0,0622215 1 0,0622215 11,93 0,0006
m 0,630268 3 0,210089 40,27 0,0000
r 28,057 8 3,50712 672,17 0,0000

Class–m 0,0110376 3 0,0036792 0,71 0,5490
Class–r 0,0563192 8 0,00703989 1,35 0,2148

m–r 0,781474 24 0,0325614 6,24 0,0000
Class–m–r 0,0172494 24 0,000718724 0,14 1,0000

4) Finally, compute SamEn as SampEn(m, r) =

lim{− log[Am(r)
Bm(r) ]}. Since the time series length is

finite, SampEn is estimated as SampEn(m, r,N) =
− log[Am

Bm
].

III. EXPERIMENTS AND RESULTS

A. Body temperature records

Body temperature series were recorded for 40 subjects

with multiple organ failure admitted to the Intensive Care

Unit (ICU) of Mostoles Hospital, Madrid(Spain) using a

portable temperature data logger. An example of such regis-

ters is shown in Fig. 1. The subjects were assigned to one of

two classes: survivors S and non-survivors NS. All patients

defined as“non-survivors” died in the ICU, before discharge.

Temperature was measured all along the admission, un-

til the patient was discharged or considered dead and all

monitoring devices were retired. Nevertheless, to avoid the

influence of pre-mortem or peri-mortem conditions, the last

hour was not included in the analysis. The patients were

monitored for a median of 210 hours. Prior to analysis, arti-

facts were removed from the temperature records. Artifacts

can be due to sensor disconnection or border effects. Further

details about these records can be found in [18].

B. Results

The regularity of the final discrete time signals obtained

from the preprocessing of the body temperature records was

estimated using ApEn and SampEn for both classes.

To investigate the association of average ApEn/SampEn

with patient class and parameters m and r (including inter-

actions), an analysis of variance (ANOVA) was applied to

the means with m = {1, 2, 3, 4} and r ranging from 0.1 to

0.9 in 0.1 steps. The results are presented in Tables I and II.
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Fig. 1. Example of a body temperature record.

We also studied the interactions of m and r. Fig.2 and

Fig.3 depict such interactions for ApEn, and Fig.4 and Fig.5

for SampEn.

Fig. 2. Influence of m on the separability between the two classes using
ApEn. There is only overlapping for m = 4, and the maximum separability
is achieved with m = 1.

IV. DISCUSSION

The results indicated that both ApEn and SampEn

can distinguish between the two classes (pApEn =
0.0000, pSampEn = 0.0006), with ApEn providing a slightly

higher separability (FApEn = 25.41, FSampEn = 11.93).

The interaction between classes and parameters r and m

are not significant, whereas there is a significant interaction

between r and m, in both cases.

Fig. 3. Influence of r on the separability between the two classes using
ApEn. To avoid overlapping, r should fall in the interval between 0.1 and
0.2.

There is no overlapping for ApEn when m ranges from

1 to 3, and r is 0.1 or 0.2. Regarding SampEn, there is

overlapping for m greater than 1, and for all r values.

Additionaly, there is a trend inversion at r between 0.1 and

0.2 for SampEn.

V. CONCLUSION

In contrast to other previous similar studies, ApEn appears

to provide better results than SampEn in this specific case.

For all the r and m values tested, ApEn exhibits higher

separability, with no parameter interaction. Conversely, the
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Fig. 4. Influence of m on the separability between the two classes using
SampEn. There is only overlapping for all m values except m = 1.

Fig. 5. Influence of r on the separability between the two classes using
SampEn. To minimize overlapping, r should be 0.5. Additionally, there
is interaction for r smaller than 0.2, and therefore these range should be
avoided.

separability provided by SampEn is lower, and there is

interaction for parameter r, yielding opposed results if r is

below or above 0.2. Therefore, we recommend to use ApEn

for body temperature records, with the parameters m = 1
and r = 0.1.

This study does not question the superior performance

of SampEn over ApEn previously reported in a number of

publications in terms of bias, consistency, and parameter

dependence. However, our results indicate that ApEn can

not be discarded as a regularity metric since in a few cases

it might outperform SampEn.

VI. ACKNOWLEDGMENTS

This work has been supported by the Spanish Ministry of

Science and Innovation, project TEC2008-05871.

REFERENCES

[1] A. Beuchee, G. Carrault, J.Y. Bansard, E. Boutaric, P. Betremieux and
P. Pladys, Uncorrelated Randomness of the Heart Rate is Associated
with Sepsis in Sick Premature Infants, Neonatology, vol. 96, no.2,
2009, pp. 109-114.

[2] F.J. Haran and E.A. Keshner, Sensory reweighting as a method of
balance training for labyrinthine loss, J. Neurol. Phys. Ther., vol. 32,
no. 4, 2008, pp. 186–191.

[3] S.K. Botting, J.P. Trzeciakowski, M.F. Benoit, S.A. Salama and C.R.
Diaz-Arrastia, Sample Entropy Analysis of Cervical Neoplasia Gene-
expression Signatures, BMC Bioinformatics, vol. 10, 2009.

[4] P.H. Chaves, R. Varadhan, L.A. Lipsitz, P.K. Stein, B.G. Windham, J.
Tian, L.A. Fleisher, J.M. Guralnik and L.P. Fried, Physiological com-
plexity underlying heart rate dynamics and frailty status in community-
dwelling older women, J. Am. Geriatr. Soc., vol. 56, no. 9, 2008, pp.
1698–1703.

[5] K.C. Chua, V. Chandran, U.R. Acharya and C.M. Lim, Computer-
based analysis of cardiac state using entropies, recurrence plots and
Poincare geometry, J. Med. Eng. Technol., vol. 32, no. 4, 2008, pp.
263–272.

[6] F. Broglio, F. Prodam, F. Riganti, C. Gottero, S. Destefanis, R.
Granata, G. Muccioli, T. Abribat, A.J. van der Lely and E. Ghigo,
The continuous infusion of acylated ghrelin enhances growth hormone
secretion and worsens glucose metabolism in humans, J. Endocrinol.

Invest., vol. 31, no. 9, 2008, pp. 788-794.
[7] S.M. Pincus, Approximate Entropy (ApEn) as Complexity Measure,

Chaos, vol. 5, no. 1, 1995, pp. 110-117.
[8] J. S. Richman and J. R. Moorman, Physiological time-series analysis

using approximate entropy and sample entropy, Am. J. Physiol. Heart

Circ. Physiol., vol. 278, no. 6, 2000, pp. 2039–2049.
[9] S.M. Pincus and A.L. Goldberger, Physiological time-series analysis:

what does regularity quantify?, Am. J. Physiol., vol. 266, 1994, pp.
1643–1656.

[10] J. Hu, J. Gao, J.C. Principe, Analysis of Biomedical Signals by the
Lempel-Ziv Complexity:the Effect of Finite Data Size, IEEE Tran. on

Biomedical Engineering, vol. 53, no. 12, 2006, pp. 2606–2609
[11] R.A. Thuraisingham, G.A. Gottwald, On multiscale entropy analysis

for physiological data, Physica A, vol. 366, 2005, pp. 323–332.
[12] S. Lu, X. Chen, J.K. Kanters, I.C. Solomon, and K.H. Chon, Automatic

Selection of the Threshold Value r for Approximate Entropy, IEEE

Tran. on Biomedical Engineering, vol. 55, no. 8, 2008, pp. 1966–
1972.

[13] P. Castiglioni and M. Di Rienzo, ”How the Threshold R Influences
Approximate Entropy Analysis of Heart-rate Variability”, Computers

in Cardiology,Bologna, Italy, 2008, pp. 561–564.
[14] H. Xie, W. He, and H. Lui, Measuring Time Series Regularity Using

Nonlinear Similarity-based Sample Entropy, Physics Letters A, vol.
372, 2008, pp. 7140–7146.

[15] M. Ferrario, M.G. Signorini, G. Magenes and S. Cerutti, Comparison
of Entropy-based Regularity Estimators: Application to the Fetal Heart
Rate Signal for the Identification of Fetal Distress, IEEE Trans. on

Biomedical Engineering, vol. 53, no. 1, 2006, pp. 119–125.
[16] R. Hornero, M. Aboy, D. Abásolo, J. McNames and B. Goldstein, In-

terpretation of Approximate Entropy: Analysis of Intracranial Pressure
Approximate entropy During Acute Intracranial Hypertension, IEEE

Tran. on Biomedical Engineering, vol. 52, no. 10, 2005, pp. 1671–
1680.

[17] X. Chen, I.C. Solomon and K.H. Chon, ”Comparison of the Use of
Approximate entropy and Sample Entropy: Applications to Neural
Respiratory Signal”, in 27th Annual Engineering in Medicine and

Biology Conference , Shanghai, China, 2005, pp. 4212–4215.
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