
  

 

Abstract—Aim: To classify patients with possible diagnosis 

of Obstructive Sleep Apnea Syndrome (OSAS) into groups 

according to the severity of the disease using a decision tree 

producing algorithm based on nonlinear analysis of 3 

respiratory signals instead of the use of full polysomnography. 

Patients-Methods: Eighty-six consecutive patients referred 

to the Sleep Unit of a Pulmonology Department underwent 

full polysomnography and their tests were manually scored. 

Three nonlinear indices (Largest Lyapunov Exponent-LLE, 

Detrended Fluctuation Analysis-DFA and Approximate 

Entropy-APEN) were extracted from two respiratory signals 

(nasal cannula flow-F and thoracic belt-T). The oxygen 

saturation signal (SpO2) was also selected. The above 

measurements provided data to the C4.5 algorithm using a 

data mining application.  

Results: Two decision trees were produced using linear and 

nonlinear data from 3 respiratory signals. The discrimination 

between normal subjects and sufferers from OSAS presented 

an accuracy of 84.9% and a recall of 90.3% using the 

variables age, sex, DFA from F and Time with SpO2<90% 

(T90). The classification of patients into severity groups had 

an accuracy of 74.2% and a recall of 81.1% using the 

variables APEN from F, DFA from F and T90. 

Conclusion: It is possible to have reliable predictions of the 

severity of OSAS using linear and nonlinear indices from only 

two respiratory signals during sleep instead of performing full 

polysomnography. The proposed algorithm could be used for 

screening patients suspected to suffer from OSAS. 

I. INTRODUCTION 

BSTRUCTIVE Sleep Apnea Syndrome (OSAS) is a 

common disorder that affects 4% and 2% of middle-

aged men and women respectively [1]. The importance of a 
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normal sleep pattern can easily be understood when 

deteriorations in health status and quality of life [2] of 

patients suffering from OSAS are taken into consideration. 

Early screening and detection of the syndrome is mandatory 

in order to permit the effective therapy with the application 

of a continuous positive airway pressure (CPAP) appliance 

[3]. The full polysomnographic study conducted in specially 

designed sleep laboratories is the gold standard for the 

proper diagnosis, whereas various techniques such as night 

oximetry have been utilized to provide an alternative 

screening test for potential patients, as the number of those 

subjects is constantly increasing. The effectiveness of these 

screening techniques has been an issue of controversy [3]. 

 Sleep itself is an active and regulated process which 

modulates autonomous nervous system functions such as 

temperature, respiration, blood pressure, and heart rate [4]. 

Since the regulation of this autonomic activity has been 

found to be a nonlinear deterministic behavior [5], various 

researchers have tried to apply measures of nonlinear 

dynamics to the electroencephalographic (EEG) and 

electrocardiographic (ECG) signals included in 

polysomnography [6]. Little has been done to explore these 

dynamics in pathological respiratory signals in patients 

with OSAS or apply them to a novel method of screening 

for the existence of the disease. 

  Another open issue is the choice of a suitable 

classification algorithm for the detection of the syndrome of 

interest. Recently, Polat et al, presented comparison of 

Different Classifier Algorithms on the Automated Detection 

of Obstructive Sleep Apnea Syndrome [7]. The obtained 

results have shown that the best classifier system for the 

diagnosis of obstructive sleep apnea syndrome is C4.5 

decision tree classifier. Based on that fact, we have tried to 

integrate the findings of nonlinear analysis of the 

respiratory signals in polysomnography into a data mining 

application that produces C4.5 decision tree algorithms. 

The aim was to classify patients with possible diagnosis of 

OSAS into groups according to the severity of the disease 

using a decision tree producing algorithm based on 

nonlinear analysis of only 3 respiratory signals instead of 

the use of full polysomnography. 
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II. METHODS 

A.  Recording & Pre-processing 

Eighty-six consecutive patients referred to the Sleep Unit 

of the 2nd Pulmonology Department of ―G Papanikolaou‖ 

Hospital and who accepted to sign the informed consent 

form were included in the study. The Study had the 

approval by the ethics committee of the hospital. All the 

subjects reported symptoms consistent with OSAS and had 

no significant commorbidities. The subjects underwent 

overnight attended polysomnography (Somnologica 7000, 

Flaga; Iceland), including electrocardiography, 

electroencephalography (C3-A2, C4-A1 leads), 

electrooculography (EOL, EOR), submental and tibialis 

electromyography for sleep staging according to standard 

criteria [8] and respiratory recordings of thoracic and 

abdominal movements, nasal flow by pressure cannula, 

snoring, and arterial oxygen saturation with a finger probe 

using pulse oximetry. Apnea and hypopnea were defined in 

accordance with standard used criteria [9]. The recordings 

were manually scored by an experienced medical doctor. 

In total 24 subjects were found to be normal (Apnea-

Hyponea Index-AHI less than 5/hour) and 62 suffered from 

OSAS. The severity of the syndrome was classified as 

follows: 5<AHI≤15=mild, 15<AHI≤30=moderate and 

AHI>30=severe. Table I summarizes the descriptive 

statistical data from the total 86 patients. 

Three nonlinear indices (Largest Lyapunov Exponent-

LLE, Detrended Fluctuation Analysis-DFA and 

Approximate Entropy-APEN) were extracted from two 

respiratory signals (nasal cannula flow-F and thoracic belt 

movement-T). The oxygen saturation signal (SpO2) from 

pulse oximetry was also selected. The above signals had a 

mean duration of 315 minutes and were first exported in 

European data Format to be further processed with the use 

of signal processing software (Matlab by Mathworks Inc.) 

in personal computers. The LLE calculation required the 

use of a command line application by Rosenstein et al as 

well as a spreadsheet program (Microsoft Excel.) 

The basic statistical analysis was performed with the use 

of SPSS for Windows, Version 15.0 (SPSS Inc, Chicago, 

Illinois). 

 
TABLE I 

DESCRIPTIVE STATISTICS 

  N   Mean Std. Deviation 

AGE 86 47,73 13,44 

EPWORTH 79 8,27 5,26 

BMI 82 32,33 6,56 

NEC_CIRC 64 41,56 4,71 

WAIST 63 110,71 17,25 

HIP 64 114,41 14,30 

TST 86 314,99 58,67 

T90 86 23,08 29,43 

AHI 86 35,37 33,89 

AI 86 24,20 30,88 

HI 86 11,13 11,23 

LLEf 86 0,64 0,61 

LLEt 79 1,12 0,81 

DFA slow_f 86 0,28 0,29 

DFA fast_f 86 0,32 0,34 

DFA slow_t 79 0,18 0,23 

DFA fast_t 79 0,55 0,18 

APEN low_f 86 -8,77 9,48 

APEN high_f 86 8,73 8,89 

APEN low_t 79 -29,37 32,76 

APEN high_t 79 33,81 30,97 

BMI=Body Mass Index, NEC_CIRC=Neck circumference 9(in cm), 

TST=Total Sleep Time (in min), T90=Time with SaO2<90%, 

AHI=Apnea-Hypopnea Index, AI=Apnea Index, HI=Hypopnea Index, 

LLE=Largest Lyapunov Exponent, f=flow signal, t=thoracic belt signal, 

DFA=Detrended Fluctuation Analysis α factor (slow-fast), 

APEN=Approximate Entropy 

 

 

B. Feature extraction 

As concerns the methods of analysis that were selected, 

the following information is explanatory. The method of 

detrended fluctuation analysis [10] has proven useful in 

revealing the extent of long-range correlations in time 

series. Briefly, the time series to be analyzed (with N 

samples) is first integrated. Next, the integrated time series 

is divided into boxes of equal length, n. In each box of 

length n, a least squares line is fit to the data (representing 

the trend in that box). The y coordinate of the straight line 

segments is denoted by yn(k).  

Next, we detrend the integrated time series, y(k), by 

subtracting the local trend, yn(k), in each box. The root-

mean-square fluctuation of this integrated and detrended 

time series is calculated by  

 

This computation is repeated over all time scales (box sizes) 

to characterize the relationship between F(n), the average 
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fluctuation, and the box size, n. Typically, F(n) will 

increase with box size. A linear relationship on a log-log 

plot indicates the presence of power law (fractal) scaling. 

Under such conditions, the fluctuations can be 

characterized by a scaling exponent, the slope of the line 

relating log F(n) to log n. The boxes selected for the signal 

analyses included time periods of 8, 30, and 100 seconds, 

which represent the mean duration of 2, 6 and 24 breaths 

respectively. The time series used for the calculation of 

DFA from F were 20 minutes long and the same duration 

for the T signals was 240 minutes. The difference in the 

length of the two types of signals reflects the limitations in 

the computational capabilities of the personal computers 

used, due to the large overall size of the flow signals (as a 

result from the 200Hz sampling in this case). Two DFA 

measurements were obtained from each signal, the DFA 

fast value which represented the power law slope on the 

medium to fast time scales, as well as the DFA slow value, 

i.e. the slope on the slow to medium time scales. 

Entropy, as it relates to dynamical systems, is the rate of 

information production. Methods for estimation of the 

entropy of a system represented by a time series are not, 

however, well suited to analysis of the short and noisy data 

sets encountered in cardiovascular and other biological 

studies. Pincus introduced approximate entropy (ApEn) 

[11], a set of measures of system complexity closely related 

to entropy, which is easily applied to clinical cardiovascular 

and other time series. The method examines time series for 

similar epochs: more frequent and more similar epochs lead 

to lower values of ApEn. Informally, given N points, the 

family of statistics ApEn(m, r, N ) is approximately equal to 

the negative average natural logarithm of the conditional  

probability that two sequences that are similar for m points 

remain similar, that is, within a tolerance r, at the next 

point. Thus a low value of ApEn reflects a high degree of 

regularity. Importantly, the ApEn algorithm counts each 

sequence as matching itself, a practice carried over from the 

work of Eckmann and Ruelle to avoid the occurrence of 

ln (0) in the calculations [12]. The values selected in our 

study were: m=2, r=0.2, N=the total sleep recording. 

Alternative values for these parameters showed no 

significant alteration in the derived APEN figures. 

The Largest Lyapunov exponent estimation was based on 

the complexity theory: Consider two points in a space: X0 & 

X0 + Dx0, each of which will generate an orbit in that space 

using some equation or system of equations. These orbits 

can be thought of as parametric functions of a variable like 

time. If we use one of the orbits as a reference orbit, then 

the separation between the two orbits will also be a function 

of time. Because sensitive dependence can arise only in 

some portions of a system (like the logistic equation), this 

separation is also a function of the location of the initial 

value and has the form Dx(X0, t). In a system with 

attracting fixed points or attracting periodic points, 

Dx(X0, t) diminishes asymptotically with time. If a system 

is unstable, like pins balanced on their points, then the 

orbits diverge exponentially for a while, but eventually 

settle down. For chaotic points, the function Dx(X0, t) will 

behave erratically. It is thus useful to study the mean 

exponential rate of divergence of two initially close orbits 

using the formula: 

 
 

This number, called the Lyapunov exponent "l" 

[lambda], is useful for distinguishing among the various 

types of orbits. It works for discrete as well as continuous 

systems. Various techniques have been developed to 

calculate this measure. One of the most robust and practical 

is the method proposed by Rosenstein et al [13]. The 

method is suitable for calculating the LLE from small data 

sets with reliability. For the flow signals, the method was 

applied for periods of 6 minutes, whereas 170-minute-                          

periods were analyzed for the thoracic belt signals.  

 

C. Feature Selection phase 

Feature selection is one of the most important steps in 

pattern recognition or pattern classification and data 

mining. It is difficult to measure classification information 

in all features [14]. Data preprocessing is an indispensable 

step in effective data analysis. It prepares data for data 

mining and machine learning, which aim to turn data into 

business intelligence or knowledge. Feature selection is a 

data preprocessing technique commonly used on high 

dimensional data. Feature selection studies how to select a 

subset or list of attributes or variables that are used to 

construct models describing data. 

Feature selection is normally done by searching the space 

of attribute subsets, evaluating each one. This is achieved 

by combining attribute subset evaluator with a search 

method. 

For the feature selection phase, two objects must be set 

up: a feature evaluator and a search method. The evaluator 

determines what method is used to assign a worth to each 

subset of features. The search method determines what style 

of search is performed. 

The feature selection can be done in two ways: 1) using 

full training set (the worth of the feature subset is 

determined using the full set of training data), or 2) by 

cross-validation (the worth of the feature subset is 

determined by a process of cross-validation). In addition, 

the classifying time grows dramatically with the number of 

features, rendering the algorithm impractical for problems 

with a large number of features.  

In this study, we have chosen the classifier subset 

evaluator as a feature evaluator and BestFirst as a search 

method. The classifier subset evaluator evaluates attribute 

subsets on training data or a separate hold out testing set. 

Furthermore, we have used the J48 classifier as a classifier 

to estimate the 'merit' of a set of attributes. The BestFirst 

searches the space of feature subsets by greedy hill-climbing 

augmented with a backtracking facility. 
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D. Classification Techniques 

C4.5 Decision tree learning is one of the most widely 

used and practical methods for inductive inference. It is a 

method for approximating discrete-valued functions that is 

robust to noisy data and capable of learning disjunctive 

expressions [15, 16]. C4.5 decision tree learning is a 

method for approximating discrete-valued functions, in 

which the learned function is represented by a decision tree. 

Learned trees can also be represented as sets of if–then 

rules to improve human readability. These learning 

methods are among the most popular of inductive inference 

algorithms and have been successfully applied to a broad 

range of tasks including learning to diagnose medical cases. 

C4.5 Decision tree learning is a heuristic, one-step look 

ahead (hill climbing), non-backtracking search through the 

space of all possible decision trees [15–17]. 

The aim of C4.5 decision tree learning is to recursively 

partition data into sub-groups. Working of C4.5 decision 

tree learning is as follows: 

 Select an attribute and formulate a logical test on 

attribute 

 Branch on each outcome of test, move subset of 

examples (training data) satisfying that outcome to 

the corresponding child node 

 Run recursively on each child node 

 Termination rule specifies when to declare a leaf 

node  

Overfitting was avoided by evaluating the classification 

algorithms using 10-fold cross-validation. 

The performance of each classifier was assessed with a 

stratified 10-fold cross-validation method. This approach 

has the advantage that all the data is, at some point, used 

for model evaluation, as opposed to simply splitting the 

data into testing and training sets. Instead, the data was 

divided into 10 equal sized fragments, each of which was in 

turn used as an independent test set, while the other 

fractions were used for training the classifier. Classification 

error was then estimated as the average performance over 

the 10 test sets. The classification and feature selection 

tasks were performed with the help of a freely available 

software package Weka [18, 19], Version 3.5.8 (Weka 

Machine Learning Project, The University of Waikato, New 

Zealand) by calling it from R. 

 

III. RESULTS 

 

Two decision trees were produced using linear and 

nonlinear data from the three respiratory signals and 

supplying them to the data mining application mentioned 

above. The fist decision tree presents an algorithm to 

discriminate between normal subjects and patients with 

OSAS, whereas the second one is used to categorize 

patients into groups of disease severity. 

 The discrimination between normal subjects and 

sufferers from OSAS presented an accuracy of 84.9% and a 

recall of 90.3% (Method statistics can be seen in Table II) 

using the variables age, sex, DFA from nasal cannula flow 

(F) and Time with SpO2<90% (T90). It is interesting that 

only two respiratory signals are exploited in this case 

providing sufficient data to screen for sleep apneas. 
 

 

TABLE II 

C4.5 CLASSIFICATION TREE STATISTICS 

 

Correctly Classified Instances           73                84.89 % 

Incorrectly Classified Instances         13               15.11 % 

Kappa statistic                                    0.6195 

Mean absolute error                           0.2082 

Root mean squared error                   0.3863 

Relative absolute error                      51.37 % 

Root relative squared error                86.03% 

Total Number of Instances                86      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall   F-Measure    ROC Area    Class 

  0.708     0.097          0.739     0.708       0.723       0.782          Normal 

  0.903     0.292          0.889     0.903       0.896      0.782         Abnormal 

 
The second produced algorithmic sequence is suitable for 

the classification of OSAS patients into groups according to 

the severity of the syndrome. The following figure 1 shows 

the produced decision tree for the classification. 

 

 
 

Fig.1. Desicion tree produced by C4.5 algorithm for the classification of 

OSAS patients into severity groups. 

 

The classification of patients into severity groups had an 

accuracy of 74.2% and a recall of 81.1% using the variables 

APEN from F, DFA from F and T90 (Table III). Again we 

have found that the use of only two signals (nasal flow and 

pulse oximetry) are adequate for the estimation of the 

severity level. Moreover the algorithm was more precise in 

cases with severe OSAS, which will definitely need the use 

of CPAP devices for therapeutic purposes. 

3468



  

TABLE III 

C4.5 STATISTICS FOR SEVERITY OF OSAS 

 

Correctly Classified Instances           46               74.19% 

Incorrectly Classified Instances         16               25.81 % 

Kappa statistic                                 0.4567 

Mean absolute error                        0.3021 

Root mean squared error                0.4954 

Relative absolute error                   62.56 % 

Root relative squared error            100.77 % 

Total Number of Instances               62 

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall   F-Measure   ROC Area   Class 

0.811     0.36         0.769        0.811      0.789            0.645          Severe 

0.64       0.189       0.696        0.64        0.667            0.645         Medium 

 

IV. CONCLUSION 

 

It is possible to have reliable predictions of the severity of 

OSAS using linear (like the Oxygen saturation) and 

nonlinear indices (like DFA and APEN) from only two 

respiratory signals (Flow from nasal cannula and pulse 

oximetry) during sleep instead of performing full 

polysomnography. The selected signals are reliably 

indicative of disturbed respiration during sleep and are 

universally considered easy and practical to use [20]. The 

utilization of those biosignals alone for accurate prediction 

of sleep apneas offers an obvious advantage to clinicians 

and sleep researchers, as it can alternatively be used instead 

of the expensive and time consuming full 

polysomnography. Furthermore, contemporary portable 

devices that can measure these parameters are currently 

under development and are expected to bring a new era of 

remote signal acquisition in home care applications [21]. 

The integration of the proposed algorithms in such devices 

will certainly boost screening for OSAS in remote areas and 

without the need for large specialized sleep units, thus 

enhancing telemedicine capabilities. 

The proposed algorithms could therefore be used for 

screening patients suspected to suffer from OSAS. The 

obtain results show promising levels of accuracy in this 

field and the equipment needed to perform this screening is 

generally cheap and easy to operate. 

Future similar studies with the use of more powerful 

computers are required in order to explore the effect of 

analyzing longer time series on the precision and recall 

features of the methodology. In addition, further analysis 

with a larger number of patients could show the 

effectiveness and reproducibility of the proposed method 

and explore the trends in the precision and recall 

characteristics in groups of patients with other 

commorbidities, like congestive heart failure or overlap 

syndrome. 
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