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Abstract— Stereotactic neurosurgery for Parkinsonś disease
(PD) is one of the most used treatments for relief symptoms of
this degenerative disorder. Current methods include ablation
and deep brain stimulation (DBS) that can be applied to
the various nuclei in the basal ganglia (BG), for instance to
the Subthalamic nucleus (STN) or the Ventral medial nucleus
(Vim). Identification of thus regions must be rigorous and
within a minimum position error. Usually, skilled specialist
identifies the brain area by comparing and listening to the
rhythm created by the temporal and spatial aggregation of
action potentials presented in microelectrode recordings (MER).
We present a novel system for automatic identification of
the various nuclei in the BG which addresses the limitations
of the subjectivity and the non-stationary nature of MER
signals. This system incorporates the time-frequency analysis
using the Hilbert-Huang Transform (HHT), which is a recent
tool for processing nonlinear and non-stationary data, with a
dynamic classifier based on Hidden Markov Models (HMM).
Classification accuracy in two different databases is compared
to validate the performance of the proposed method. Results
show that system can recognize selected nuclei with a mean
accuracy of 90%.

I. INTRODUCTION

Parkinson’s disease (PD) is the second most common

neurodegenerative disease after Alzheimer’s disease [1]; esti-

mated prevalence (per 100,000) for those aged 65-74 years is

598 [2]. PD is a degenerative disorder of the central nervous

system that often impairs the persons motor skills and

speech, which result in significant decrease in quality of life

not only for the patient but the family as well. Parkinsonism

has three cardinal motor symptoms: slowness in both the

beginning and the execution of a movement (bradykine-

sia), muscle rigidity, and resting tremor [1], [3]; postural

instability (balance impairment) has also been identified in

this group of clinical symptoms [4]. Normal movement is

initiated by neurons in the cerebral cortex and is modulated

by neurons in the basal ganglia (BG) and thalamus. The tha-

lamus form a complex network of pathways between the var-

ious nuclei in the BG resulting in inhibition of movement and

other pathways resulting in facilitation of the movement. In

PD there is an imbalance between inhibition and facilitation,

which lead to a hypoactivity of the BG [1]. Normally drug

treatment with L-dopa reduces symptoms; however, it has

been observed some complications due to the longstanding

use of this drug [5]. Stereotactic neurosurgery is used instead
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when patient does not respond to L-dopa treatment [3], [5],

[6]. Commonly two different neurosurgery methods are used:

ablation and deep brain stimulation (DBS). Ablation of the

various nuclei in the brain was the main treatment form

1950 until 1997. In recent years, ablation has given way

to DBS due to the obvious advantage of minimal destruction

of brain tissue, also because it can be programmed to the

specific needs of the patient, maximizing symptoms relief

and minimizing any adverse effects. The success in the DBS

procedure is the correct localization of the various nuclei

where the stimulation microelectrode will be placed. Despite

the used of a stereotactic frame and CT/MR neuroimaging-

based techniques for targeting, intraoperative neuronal mi-

croelectrode recordings (MER) can be used to improve the

accuracy of electrode positioning. In the trajectory to the

target, Fig. 1, the microelectrode crosses through different

regions with particular electrophysiological characteristics

that can be used to discriminate brain zones [8], determine

optimal tracks, and to identify the target [7]. Here, we present

a novel system for automatic identification of various nuclei

(Subthalamic nucleus, thalamus, Substantia Nigra pars retic-

ulata, and Zona incerta) from the time-frequency analysis

of MER recordings as a support for adequate placement of

the DBS microelectrode in PD neurosurgery (Fig. 2 show

typical MER recordings). Comparisons using two different

databases of MER recordings are presented to validate the

proposed system. The system provides several advantages:

(a) for the feature extraction it is not necessary previous

Fig. 1. Bilateral microelectrode trajectory to the target in the basal ganglia
for placement of the DBS microlectrode.
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Fig. 2. Tipical MER recordings form various nuclei in the BG. (From top-
to-Bottom) Thalamus (TAL), Subthalamic nucleus (STN), Substantia Nigra
pars reticulata (SNr), and Zona incerta (ZI)

knowledge about the data and assumptions about linearity or

stationary are not necessary, (b) the signal processing used

on these MER signals make the system suitable for hardware

implementation.

This paper is organized as follows: In Sect. 2, Theoretical

methods are reviewed. In Sect. 3 the proposed system is

presented. Finally in Sect. 4, results and final discussion is

given.

II. METHODS

A. Hilbert Spectrum Analysis

MER recordings are non-stationary signals and time-

dependent stochastic signal, due to the presence of action

potentials [3]. Moreover, it is known that the information

contained in biological signals is highly dependent on numer-

ous biological aspects with nonlinear structure, for example,

fatigue phenomena that cause nonsymmetrical behavior of

spikes, external factor as the cortical pulse generated by res-

piratory and cardiac activity, systematic amplitude reduction

of the potential action when the cell is switching at high

frequency, microelectrode movements, background noise, etc

[3], [8].

Hilbert-Huang transform is a novel technique for an-

alyzing non-stationary and nonlinear signals development

by Huang et al [9], which depends solely on the signal

information. The HHT is performed in two main steps: (i)

empirical mode decomposition (EMD) and (ii) Hilbert spec-

tral analysis (HSA). The purpose of EMD is to decompose

a signal into a finite set of well-behaved Hilbert transform

(HT) signals, called intrinsic mode functions (IMF). HSA

is designated to calculate the instantaneous frequency and

amplitude of IMFs through the HT and to obtain the time-

energy-frequency distribution called Hilbert spectrum (HS).

In order to define an orthogonal basis and a meaningful

instantaneous frequency IMFs must satisfy two conditions:

(1) in the whole data set, the number of extreme and the

number of zero crossings must either equal or differ at most

by one; and (2) at any point, the mean value of the envelope

define by the local maxima and the envelope define by the

local minimal is zero. The numerical procedure to obtain

those IMFs knows as sifting process and is described in detail

in [9].

Once IMFs are calculated the analyzed signal can be

expressed as follows:

x(t) =

n
∑

j=1

cj(t) + rn(t) (1)

where n is the number of IMFs, rn(t) is the final residue

which can be either the mean trend or a constant, and

functions cj(t) are the IMFs, which are nearly orthogonal to

each other, and all have zero means. The second step in the

HHT is the Hilbert spectral analysis. After the decomposition

step, the IMFs are analyzed using the HT to obtain the

instantaneous frequency and the instantaneous amplitude

defined as:

ω(t) =
dθ

dt
(2)

a(t) = (x(t)2 + y(t)2)1/2 (3)

where

θ(t) = arctan
y(t)

x(t)
(4)

y(t) =
1

π
P

∫

x(t − τ)

τ
dτ (5)

where ω(t) is the instantaneous frequency (IF), a(t) is the

instantaneous amplitude (IA), θ(t) is the instantaneous phase,

y(t) is the Hilbert Transform of x(t), P indicates the Cauchy

principle value, and x(t) is the time series. By means of the

combination of the IA and the IF of each IMF, it is possible

to obtain the resulting time-energy-frequency representation

of the signal.

H(f, t) = Re

n
∑

j=1

aj(t)e
j2π
∫

ωj(t)dt
(6)

Here rn(t) is left behind because is either the mean trend

of the data or a constant. Once the IA and the IF have been

calculated they can be combined graphically in a 3D plane,

similar to those obtained with the wavelet transform. It is

called the Hilbert Spectrum (HT) show in Fig. 3.

III. AUTOMATIC IDENTIFICATION SYSTEM

The automatic identification system can be summarized

as shown in Fig. 4. It is composed of four steps: (i) raw

data preprocessing, (ii) time-frequency analysis, (iii) feature

extraction, and (iv) classification.

A. Raw data preprocessing

Prior to MER signal analysis, raw data is amplified by

a preamplifier located near the electrode to reduce electrical

noise. After these preconditioning steps, the signal is sampled

with an analog-to-digital converter with a sampling rate of at

least 24 kHz. Then an artifacts detector is used to eliminate

wrong entries presented in the MER signal due to patient
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Fig. 4. General structure of the proposed automatic identification system of various nuclei in the BG. The feedback arrow represent the selection of the
most discriminating features by the classifier in the training step, using the combination of features which presented the highest accuracy rate.

Fig. 3. Hilbert Spectrum. Time contour (blue), frequency contour (red).
Contours are computed to extract discriminating informacion from the HS.

movements. Each MER signal is segmented with a window

of 1s, time considered enough for identification of brain

zones [3].

B. Time-frequency analysis

Once the signal is free of artifacts and normalized in

time, HS is calculated using the Hilbert-Huang transform

presented in Sect. 2. First empirical mode decomposition is

used to extract nine IMF that contain most of the frequencies

of interest of the MER signal, then HT is computed for

each IMF in order to obtain the instantaneous amplitude and

frequency. After that the HS can be constructed.

C. Feature extraction

Statistical moments are calculated from the time contour

of the HS, its first derivative and its second derivative, which

also present discriminating information about the dynamic of

the MER signal (Fig. 5). The follow measures are calculated:

m(a) = max(|a|) (7)

σ2(a) =
1

N − 1

∑

n∈Ck

(an−a)2 (8)

E(a) =
1

2

∑

n∈Ck

a2
n (9)

E1(a) = −
∑

n∈Ck

a2
n log(a2

n) (10)

E2(a) =
1

N

∑

n∈Ck

|an| (11)

γ1(a) =

1
N

∑

n∈Ck

(an−a)3

(

1
N

∑

n∈Ck

(an−a)2

)3/2
(12)

γ2(a) =

1
N

∑

n∈Ck

(an−a)4

(

1
N

∑

n∈Ck

(an−a)2

)2 − 3 (13)

where an is the nth sample of the Nth MER record, a is the

mean value, N is the number of records of each BG nuclei

and k = 0, 1, 2, ..., C, with C the number of BG nuclei;

σ is the standard deviation and σ2 de variance, E(a) is the

energy, E1(a) is the Shannons entropy, E2(a) is the mean of

the absolutes elements on each BG nuclei, γ1(a) is the third

standardized moment around the mean called Skewness and
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Fig. 5. (From Top-to-Bottom) Time contour, first derivative, and second
derivative.
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TABLE I

CLASSIFICATION RESULTS

Database %TAL %STN %SNR %ZI %Total

UPV-BD 86.00± 8.10 83.75± 15.65 75.83± 15.44 98.15± 1.95 88.81± 2.56

UTP - 91.43± 5.52 87.27± 8.24 - 90.00± 3.77

γ2(a) is the fourth moment around the mean called Kurtosis.

Each of these measures is calculated from the three contours

to obtain a set of 21 features. Later in the classification step,

five features will be selected as discriminating characteristics

because they maximized the classification accuracy among

all the possible combinations of the initial feature set.

D. Classification

Dynamic classification is based on Hidden Markov Models

(HMM). Once the discriminating features has been selected,

the classification task begins with the generation of an HMM

model for each nuclei, the HMM parameters are obtained

by the Expectation- Maximization algorithm (EM) [11] and

the parameters of the model is given by the BIC-Pruning

algorithm [10]. In the validation step a new HMM model is

generated for the unknown MER recording in the same way

than in the training step and then it is compared model-to-

model with the Kullback-Leibler distance [12]; the selection

of the class to which the new data belongs is made based on

the minimum distance.

IV. RESULTS AND DISCUSSION

A. MER Database

In order to validate the proposed system two different

sets of MER recordings are used in this paper. The first

one is the Polytechnic University of Valencias database

(UPV-BD). The surgeries were carried out in the University

General Hospital of Valencia, and labeled by both specialists

in neurophysiology and electrophysiology, according to the

affected region. The equipment used in the acquisition was

the LEADPOINTTM Medtronic, with a sampling rate of 24

kHz and 16-bit resolution. In total there are 177 records

discriminated in 43 TAL signals, 25 STN signals, 24 SNr

signals, and 85 ZI signals. The second set of MER signals

correspond to five interventions carried out locally in the city

of Pereira where the authors participated. All the subjects

gave their informed consent allowing the use of the neural

signals recorded to research. The acquisition equipment used

is the ISIS MER of Inomed, neural signals were labeled

by two specialists in neurosurgery and neurophysiology; the

sampling rate was 25 kHz and 16-bit resolution. There are

160 neural signals divide in two groups, STN signals and

non-STN signals.

B. Results

A final set of five characteristics obtained the highest

classification rate among the possible combinations of the

feature set, those were: (7), (9), and (10) from the time

contour; (7) from the first derivative, and (7) from the second

derivative. Table I presents the classification results for the

databases. As shown the system can recognized the different

nuclei with a high classification rate for both databases, also

due to the flexibility of the Hilbert-Huang transform a reduce

space of feature can represent the dynamic of the MER

signals, which is an advantage in the classification stage.

As shown the system can recognized, with low classification

error, the STN nuclei which is a common target in the PD

neurosurgery.

In future work, further study is necessary in order to

improve classification accuracy of some nuclei that were not

well discriminated with the features selected (SNR), also the

inclusion of more nuclei and more patients is necessary. In

a final stage, the proposed system could be implemented

in a computational platform for operating online, to give

intraoperatory support to the specialists in the surgery for

PD.
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