
  

 

Abstract—Functional electrical stimulation (FES) has been 
widely used in the area of neural engineering. It utilizes 
electrical current to activate nerves innervating extremities 
affected by paralysis. An effective combination of a traditional 
PID controller and a neural network, being capable of nonlinear 
expression and adaptive learning property, supply a more 
reliable approach to construct FES controller that help the 
paraplegia complete the action they want. A FES system tuned 
by Radial Basis Function (RBF) Neural Network-based 
Proportional–Integral–Derivative (PID) model was designed to 
control the knee joint according to the desired trajectory 
through stimulation of lower limbs muscles in this paper. 
Experiment result shows that the FES system with RBF Neural 
Network-based PID model get a better performance when 
tracking the preset trajectory of knee angle comparing with the 
system adjusted by Ziegler- Nichols tuning PID model. 

I. INTRODUCTION 

unctional electrical stimulation (FES) is an advancing 
technology for restoring paralyzed motor functions 

caused by a spinal cord injury or a stroke. It applies 
programmed electrical stimuli to intact peripheral nerves or 
muscles to help the quadriplegic patients completing the 
motion they want. It is generally accepted that FES needs 
better control strategies to extend the clinical application and 
how to modulate the parameters of the system to make the 
patients achieve the desired motion satisfactorily is one of the 
most important issues in FES application [1]. 

Most FES systems in early stage adopted open-loop control 
strategies [2,3] which is even preferred currently by many 
therapist as its simpleness although initial and periodical 
adjustment were needed in stimulation patterns for individual 
patients. However, the performance of the open-loop 
controllers is not satisfying owing to disturbances from 
external loads and muscle fatigue. Subsequently, closed-loop 
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controller [4-6] was introduced to adjust the parameters of the 
FES system by feedback algorithm according to the error 
between the actual and desired output, which enhanced the 
precision and stability of the system significantly. 
Proportional–Integral–Derivative (PID) controller is a 
generic control loop feedback mechanism that widely used in 
industrial control systems. It attempts to correct the error 
between a measured  variable and a desired setpoint through 
the proportional (P), integral (I) and derivative (D) values, 
and then keeps the error minimal. Veltink et al [7], in 1992, 
used the PID in FES system to control the knee joint angle. 
How to fix the proportional, integral and derivative values for 
PID controller is very important, especially in FES 
application which expects an exigent exactitude and stability. 
The traditional estimation of the P, I and D value for 
conventional PID is base on the industrial experience and 
manual tuning, such as Ziegler–Nichols method. In order to 
improve the control effect, some adaptive algorithms were 
developed. For example, Visioli A et al [8] shown a fuzzy 
logic-tuned PID controller; Benaskeur, A.R et al [9] 
illustrated a backstepping-based adaptive PID control and 
Yasue Mitsukura et al [10] used genetic algorithm to fix the 
parameters of PID. 

This study adopts a Radial Basis Function (RBF) Neural 
Network-based PID scheme into FES strategy. The 
proportional, integral and derivative values of the PID are 
optimized through the self-training RBF Neural Network, and 
then used to control the knee joint angle by adjusting the 
pulse intensity in FES system. The result is compared, in this 
paper, with the controller modulated by Ziegler-Nichols 
which is widely used in Functional Electrical Stimulation 
application currently. 

II. METHODS 

1. PID Algorithm 

The discrete-form of the PID algorithm, with input error (t) 
and output u (t) is generally given as 
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where pK
is the proportional value, iK

is the integral value, 

and dK
is the derivative value. error (t) means the difference 
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between desired and measured output of controlled subject. 

2. Ziegler–Nichols PID 

    Ziegler–Nichols, introduced by John G. Ziegler and 
Nathaniel B. Nichols, is almost the most popular method 
currently in FES application.  

It confirms the PID parameters by escalating the  pK
 until 

the system starts to oscillate while
0, 0i dK K 

, and then 
calculates the PID parameters by following formulas: 
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where  
'
pK

 is the proportional value when the oscillation 
appearances and  is the circular frequency gotten from 

T
 

(  is the position of the pole in the unit circle and 
1/T is the sampling rate) 

3. PID Model based on RBF Neural Network 

A typical RBF, which is a three-layer feed-forward 
network configuration, is shown in Fig.1. The neurons in the 
hidden layer contain Gaussian transfer functions whose 
outputs are inversely proportional to the distance from the 
center of the neuron. A nonlinear mapping from input to 
output, while linear from hidden layer to output layer in RBF 
Neural Network can enhance the learning rate and avoid a 
local minimum.  

 
Fig.1 RBF neural network 

3.1 Identification algorithm of controlled plant  

Suppose that the Radial Basis Vector  
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where jh
is the static Gaussian function as the nonlinearity 

for the hidden layer processing elements. 
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the jb
stands for the standard deviation of the Gaussian,  

and the jC  is the centre value. 

The weight vector for the network is W and  
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The network output y can be expressed as: 
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The performance function  
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According to gradient descent algorithm, weights iterative 
algorithm, node center and radial parameters are as follows: 
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where  is the learning rate and is the momentum gene. 
Jacobian matrix (sensitivity of plant output to controlled 

input) algorithm can be shown as 
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where xj =
( )u k  

3.2 PID parameters 

  The (1) can be shown as:   
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According to (15) 
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And error(k)=rin(k)-yout(k) 
 
The three inputs of the PID are: 
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The error target function is defined by  

21
( ) ( )

2
E k error k

 
The three parameters of the PID were modulated by 

gradient descent algorithm 
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Fig.2 the structure of the PID modulated by RBF 

 

The structure of PID base on the RBF is shown in the Fig.2.  
The rin in the figure is the desired trajectory and yout means 
measured output. The inputs of the Neural Network 

are ( )u t , ( )yout t  and ( 1)yout t  , and the PID 

parameters were modulated through the result of RBF Neural 
Network identification. 

III. EXPERIMENT AND RESULTS 

The Parastep produced by SIGMEDICS US was employed 
to study the knee joint control here. It is a non-invasive 
system with six stimulus channels and includes a 
microcomputer to generate the pulses. Five able-bodies, three 
males and two females, participated in this experiment. They 
sit calmly on the platform with relaxed calf and the knee 
extensors (quadriceps muscle group) were stimulated by a 
pair of surface electrodes. The cathode was placed on the 
motor point of rectus femoris and the anode was placed 
distally at the quadriceps tendon. The knee joint angle was 
controlled by changing the amplitude of the stimulation pulse. 

Defining the original knee angle was 0  , when the lower 
leg was at rest during knee flexion.  
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Fig.3. Knee angle controlled by the Ziegler-Nichols based PID 
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Fig.4. Knee angle controlled by the RBF based PID 

 

In this experiment, Lilly wave, a balanced bidirectional 
pulse pair, with invariable pulse width (150µs) and amplitude 
ranged from 0 to 120 mA was used as a stimulation pulse. The 
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stimulation frequency was 25 Hz and the knee joint angle 
sampling rate was 128 Hz. PID controllers based on RBF 
Neural Network as well as Ziegler-Nichols were applied to 
control the knee joint angle tracking the preset-trajectory 
respectively by modulating the pulse amplitude of the FES 
system. 

 
Fig.5 the errors controlled by both algorithms on the five subjects 

 
Fig.3 shows the tracing result of the knee joint position 

controlled by Ziegler-Nichols PID controller on one subject 
among the five and Fig.4 shows that controlled by RBF 
Neural Network. The dashed line indicates the 
preset-trajectory and real line represents the measured output. 
We can see that from these figures the controllers tuning by 
RBF Neural Network overcomes the overshot which 
normally exists in the Ziegler-Nichols approach and may 
result in potential damage to stimulated muscle in FES system.   
The knee joint movement with RBF Neural Network can fit 
the preset-trajectory better than Ziegler-Nichols obviously. 
The errors controlled by both methods on the five subjects 
during the whole trails are shown in the Fig.5, and Root Mean 
Square and Nature Logarithm were imposed on for a 
significant discrimination. The rectangles boxes illuminate 
the results of the Ziegler- Nichols and the blue strips denote 
that of RBF Neural Network. The figure indicates that the 
latter one can maintain lower errors correspondingly and can 
improve the performance of PID to control the knee joint 
position dramatically with strong robustness. 

 

IV. CONCLUSION 

Conventional PID controller can hardly satisfied different 
operating condition [11]. This study has presented an 
adaptive FES-PID system that modulated by the RBF Neural 
Network to control knee joint position during quadriceps 
stimulation. The capability of the presented approach, with an 
advantage of self-learning, is superior to the traditional 
Ziegler- Nichols method to track the preset-trajectory, as 
indicated from the experimental results. In conclusion, an 
adaptive PID controller based on RBF Neural Network is an 
effective approach to improve the performance of the 
Functional Electrical Stimulation system. Moreover, it must 
be note that a suitable learning rate is important in practice, 

and we need to fix an optimum   according to different 

subjects in clinical application. 
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