
 

 

  

Abstract— Neurotransmitters (NTs) are substances in the 
brain which are responsible for the transmission of 
neurological impulses. Changes in their concentrations are 
associated with numerous behavioral and physiological 
processes and neurological disorders. As opposed to the 
traditional chromatographic and capillary electrophoresis, 
using electrochemical sensors is a fast and inexpensive way to 
determine concentrations of NTs. In this study we measure the 
combination of dopamine (DA) and serotonin (SE) with glassy 
carbon electrodes and differential pulse voltammetry. The 
major challenge using this method is to differentiate between 
different NTs, since the signal obtained from the electrode 
represents the interactive effect of both NTs present. We 
address this problem through methods of pattern recognition 
which relate the voltammetric measurements provided by the 
sensor to the concentration of individual NTs. Two methods of 
pattern recognition were applied (PCR and PLS-regression). 
The best rates of correct classification for the validation sets 
ranged at 42-62% (DA) and 33-50% (SE). When the ranges for 
correct prediction were extended to include one level above and 
below the true concentration level, the rates values ranged at 
81-91% (DA) and 91-100%(SE). These findings suggest that 
pattern recognition can be used to model the interaction 
between different neurotransmitters to predict actual 
concentrations of neurotransmitters using voltammetry.  

I. INTRODUCTION 
EUROTRANSMITTERS (NTS) are naturally occurring 
chemicals secreted in the brain which are responsible 

for the transmission of neurological impulses in the central 
nervous system. Changes in NTs levels are associated with 
numerous behavioral and physiological processes and 
neurological disorders including epilepsy, Alzheimer and 
Parkinson diseases, schizophrenia, depression, etc [1-3].  
Examples include nitric oxide (NO), serotonin (SA), 
dopamine (DA), norepinephrine (NE), acetylcholine and 
glutamate. These NTs coexist in biological fluids 
(cerebrospinal fluid, blood plasma, urine and saliva) and 
their accurate measurement is of great practical importance 
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in the field of biomedical chemistry, neurochemistry and 
clinical diagnosis.  Development of efficient methods to 
accurately determine concentration of a specific NT or a 
group of NTs is, therefore, on the edge of the current 
biomedical research. Speed, sensitivity, cost and real time 
monitoring are the major factors responsible for the 
efficiency of methods for quantitative measurements of NTs 
in the central nervous system. Traditionally, concentrations 
of NTs are determined using chromatographic and capillary 
electrophoresis methods [4]. These techniques are complex, 
time-consuming and are not easily adaptable for real-time 
and in-situ monitoring. Moreover, their presence at very low 
concentrations and variable levels provide a great challenge 
for their detection, requiring that highly sensitive and 
selective methods be available. A number of NTs, such as 
the ones targeted in this project (e.g. DA, SA) are 
electrochemically active and therefore they can be 
determined directly by electrochemical means. Measurement 
of neurotransmitters levels with voltammetry and carbon 
electrodes is an example of this method [5, 6].   While 
electrochemical sensors are fast, inexpensive and small, 
interactions between NTs in real world mixtures may require 
additional methods, such as automated pattern recognition, 
to predict the concentration of each NT. 

In general the proposed method belongs to the electronic 
tongue technology which combines one or more electrodes 
with pattern recognition algorithms that separate the “true” 
signal from the detailed sensor response to complex, real-
world samples that typically contain interfering species. 
Like the electronic nose, many of the applications of 
electronic tongues are related either to environmental 
monitoring, medical applications, or to food and beverage 
production. Electronic noses/tongues have been used in 
complex, real world environments where sensitivity as well 
as specificity must be considered, such as detection of 
chemical warfare agents, indoor air quality, and bacterial 
classification [7-9].   Many electronic tongues employ 
voltammetry for analyte detection at individual electrodes 
[10].   

Electrodes have previously been used before for 
simultaneous detection of dopamine and serotonin in vivo 
[5]. Although previous analyses showed the existence of 
different patterns in the voltammetric readings for the 
experiments with only one (serotonin or dopamine) or both 
neurotransmitters present, they did not use this information 
to predict the exact concentrations of neurotransmitters. The 
contribution of this study is the ability to apply pattern 
recognition methods to voltammetry data to accurately and 
simultaneously predict the concentrations of several 
neurotransmitters.    
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II. DATA 
The data was obtained by differential pulse voltammetry 

(DPV). Conventional glassy carbon electrodes (GCE) 
electrodes were used to obtain voltammetric data for 
dopamine (DA) and serotonin (SE) in three separate trials. 
The experiment was conducted in the laboratory settings at 
the Chemistry and Biomolecular Science Department. The 
whole set of DPV data consisted of three trials where each 
trial had 21 combinations of relevant concentration levels 
for the two neurotransmitters (serotonin and dopamine). The 
data was acquired with a bare GCE which had been polished 
for 3 minutes with 0.3µm alumina, sonicated in distilled 
water for 5 minutes, and rinsed three times with distilled 
water and then methanol each time. The differential pulse 
voltammograms were done in a 0.1M solution of PBS with a 
pH of 7.0. Pulse amplitude of 50mV, pulse width of 50ms 
and pulse period of 200ms were employed. 

The concentration of each neurotransmitter was held 
constant started at 20 micromolars (µM), 40 and 60 µM 
while the concentration of other neurotransmitter was 
increased starting at 20 to 100 µM in with intervals of 20 
µM. All together there were 63 voltammograms each 
representing a combination of the two controlled 
concentrations of DA and SE. An example of a 
voltammogram is given in Fig. 1. 

III. METHOD 
The goal of this study is to use the multidimensional data 

of the voltammogram to predict concentrations of both 
neurotransmitters (serotonin and dopamine) at the same 
time. This is a challenge since sensor produces mixed signal 
from both substances present in the sample.    

Votammetric data contained over 1000 measurements 
(original features) per each combination of NTs. They all 
contribute differently to the response variable and if used for 
modeling altogether could cause overfitting and, therefore, 
inadequate prediction. The process of extraction of the few 
latent variables (dimensionality reduction) is a crucial step 
toward efficient predictive model. Principal component 
analysis (PCA) is a popular approach to this problem. 
During PCA the major principal components that lie in the 
direction of the greatest variance of the voltammetric data X 
(predictors) are extracted, thus, retaining the most 
information related to the data. Another suitable approach is 
the partial least squares (PLS) regression. The goal of PLS-
regression is to extract components (latent variables) that lie 
in the direction of, i.e. explain most of the covariance 
between the predictors X (voltammetric measurements) and 
responses Y (NTs concentrations) variables. This approach 
is highly beneficial as captures the relationship between 
predictors and responses while performing dimensionality 
reduction.  

The extracted features are then fitted into the simple linear 
regression model using the training set. The PCA followed 
by this step is called Principal Component Regression 

(PCR). Another approach applied to these data, PLS-
regression, combines the two steps of dimensionality 
reduction and regression fitting. The constructed model is 
tested on its predictive power using the validation set.  

IV. RESULTS 
For this study, two of the trials were taken for training 

and the remaining one trial was considered as a validation 
set. Although the controlled neurotransmitters concentration 
levels were discrete values (20, 40, …, 100 µM), the 
predictive models produced real numbers which were 
rounded to the nearest controlled level in order to estimate 
the models’ performance. The performance was evaluated 
using three coefficients: the rate of correct classification P 
(fraction of correctly predicted classes, i.e. particular   
neurotransmitter’s levels), the extended rate of correct 
classification P* (fraction of correctly predicted classes, 
where ranges for correct prediction were extended to include 
one level above and below the true level), and the 
coefficient of determination R2 reflecting the goodness of fit 
of the linear regression built using extracted 
components/latent variables.   

The results of the application of PCR based on 7 principal 
components are shown in Table I. This number of 

TABLE I 
BEST PCR MODELS PERFORMANCE 

DA  Training and 
validation sets P P* R2 

Training 1&2 
Validation 3 

0.5714 
0.6190 

0.9286 
0.8095 

0.6935 
0.6084 

Training 1&3 
Validation 2 

0.5000 
0.4762 

0.9286 
0.9048 

0.6855 
0.7101 

 
 

PCR on 
normalized 

data 

Training 2&3 
Validation 1 

0.5000 
0.4286 

0.9286 
0.9048 

0.6855 
0.6181 

SE  Training and 
validation sets P P* R2 

Training 1&2 
Validation 3 

0.8571 
0.3333 

1.0 
0.9048 

0.8896 
0.8390 

Training 1&3 
Validation 2 

0.8571 
0.5000 

1.0 
0.9524 

0.8896 
0.8502 

 
 

PCR on  
the original 

data 

Training 2&3 
Validation 1 

0.6429 
0.4762 

1.0 
1.0 

0.7987 
0.8359 

 

Fig. 1.  Differential pulse voltammogram for a fixed SE level (60 µM), 
changing SE level (20-100 µM).  The interactive action of the two NTs on 
the current’s response makes it hard to distinguish between individual 
NT’s actions. 
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components was selected based on the significance of the 
extracted components in linear regression and the best 
accuracy of prediction in validation data sets. Separate 
models were created for dopamine and serotonin. The 
normalization (by centering and scaling using mean and 
standard deviation (respectively) of each original feature 
vector) of the data for the dopamine models improved the 
results for the PCR method. Table I shows the best results 
for the DA and SE models using PCR. 

The results of the simultaneous fitting and prediction of 
both neurotransmitters by the PLS-regression based on 7 
extracted latent variables are shown in Table II.  

The overall results from PCR and the PLS-regression 
provided the following accuracy for the neurotransmitters 
concentration prediction. For PCR models the rates of 
correct classification (P) for the validation sets ranged at 42-
62% (DA) and 33-50% (SE) while the average rates were 
50.7% and 43.64% respectively. The extended rate sof 
correct (P*’s) for the validation sets ranged at 81-91% (DA) 
and 91-100% (SE), with corresponding average values 
87.3%  and 95.24%. For PLS-regression correct 
classification rates (P) ranged at 16.7-52.4% (average 
37.3%) for DA and 28.6-35.7% (average 32.5%) for SE, 
whereas P* values ranged at 85.7-92.9% (average 88%) and 
76.2-100% (average 85.7%) respectively. Both methods 
provided very similar linear fit as shown by coefficients of 
determination (R2) for the training data sets. Fig. 2 shows an 
example of the PCR model fitting of the original, 
untransformed data. The plotting of actual versus predicted 
concentration levels reveals good fit of the applied methods. 
Similar plots for the validation sets demonstrate relatively 
good predictive power of the models. An example is shown 
in Fig. 3 for the first PCR model. Additional results were 
obtained for prediction of the difference of the dopamine 
and serotonin concentrations (DA-SE) using the same data. 
Linear PCR provided a coefficient of determination of about 
89%, thus, indicating a very good linear fit. These findings 
suggest using information on the interaction between 
different neurotransmitters in the prediction of actual 

concentrations of neurotransmitters. The overall results of 

the study are very encouraging and, in general, support the 
idea of accurate prediction of the neurotransmitters 
concentrations using voltammetry. 

V. CONCLUSION 
In this study two pattern recognition methods (principal 

component regression and partial least squares regression) 
were applied to the data obtained by differential pulse 
voltammetry using conventional glassy carbon electrodes for 
two neurotransmitters: serotonin and dopamine, for the 
purpose of prediction of neurotransmitters concentrations. 
Both methods showed similar results in the study for 
prediction of dopamine and serotonin with PCR providing 
slightly better results for the validation sets, resulting in the 

 
Fig. 3.  Prediction of the validation data set for the first model, PCR on 7 
components. 45 degree reference line indicates the perfect prediction. 

 
Fig. 2.  Fitting of the training data set for the first model, PCR on 7 
components. 45 degree reference line indicates the perfect fit.

TABLE II 
PLS MODELS PERFORMANCE 

DA  Training and 
validation sets P P* R2 

Training 1&2 
Validation 3 

0.5952 
0.5238 

0.9286 
0.8571 

0.6459 
0.5240 

Training 1&3 
Validation 2 

0.4285 
0.4286 

0.9048 
0.8571 

0.6040 
0.4710 

Training 2&3 
Validation 1 

0.5952 
0.1667 

0.9524 
0.9286 

0.6003 
0.5972 

SE  Training and 
validation sets P P* R2 

Training 1&2 
Validation 3 

0.6905 
0.2857 

1.0 
0.7619 

0.9283 
0.7933 

Training 1&3 
Validation 2 

0.7857 
0.3333 

1.0 
0.8095 

0.9104 
0.6509 

Training 2&3 
Validation 1 

0.5476 
0.3571 

0.9762 
1.0 

0.7518 
0.8745 

 

3495



  

average rates of correct classification of 50.7% (DA) and 
43.6% (SE). The average extended rates of correct 
prediction (including one level above and below the true 
level) were 87.3% and 95.2% respectively. These findings 
allow us to establish the lower bound for the subsequent 
analysis of the similar data. 

The following problems have complicated the analysis. 
The experiments were subject to the passivation effect that 
was not completely accounted for. Passivation is the 
absorption of the reactive species to the electrode; when the 
same electrodes are used for the next trial this causes the 
reduction in sensitivity. This problem contributed to the 
errors in prediction. The next stage of the predictive model 
will incorporate the passivation of the electrode and thus 
eliminate some of the problems that generate inadequate 
analysis.  

In addition, miniaturization of the sensor (e.g use of 
carbon-fiber microelectrodes, Pt wire) and another choice of 
the electrode material (carbon nanotubes, metal 
nanoparticles used as modifiers) together with a more 
careful optimization of the experimental conditions will 
contribute to the accuracy of prediction of the concentrations 
of neurotransmitters and are left for future work. 
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