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Detection and prediction of concentrations of neurotransmitters
using voltammetry and pattern recognition
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Abstract— Neurotransmitters (NTs) are substances in the
brain which are responsible for the transmission of
neurological impulses. Changes in their concentrations are
associated with numerous behavioral and physiological
processes and neurological disorders. As opposed to the
traditional chromatographic and capillary electrophoresis,
using electrochemical sensors is a fast and inexpensive way to
determine concentrations of NTs. In this study we measure the
combination of dopamine (DA) and serotonin (SE) with glassy
carbon electrodes and differential pulse voltammetry. The
major challenge using this method is to differentiate between
different NTs, since the signal obtained from the electrode
represents the interactive effect of both NTs present. We
address this problem through methods of pattern recognition
which relate the voltammetric measurements provided by the
sensor to the concentration of individual NTs. Two methods of
pattern recognition were applied (PCR and PLS-regression).
The best rates of correct classification for the validation sets
ranged at 42-62% (DA) and 33-50% (SE). When the ranges for
correct prediction were extended to include one level above and
below the true concentration level, the rates values ranged at
81-91% (DA) and 91-100%(SE). These findings suggest that
pattern recognition can be used to model the interaction
between different neurotransmitters to predict actual
concentrations of neurotransmitters using voltammetry.

1. INTRODUCTION

EUROTRANSMITTERS (NTS) are naturally occurring

chemicals secreted in the brain which are responsible
for the transmission of neurological impulses in the central
nervous system. Changes in NTs levels are associated with
numerous behavioral and physiological processes and
neurological disorders including epilepsy, Alzheimer and
Parkinson diseases, schizophrenia, depression, etc [1-3].
Examples include nitric oxide (NO), serotonin (SA),
dopamine (DA), norepinephrine (NE), acetylcholine and
glutamate. These NTs coexist in biological fluids
(cerebrospinal fluid, blood plasma, urine and saliva) and
their accurate measurement is of great practical importance
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in the field of biomedical chemistry, neurochemistry and
clinical diagnosis. Development of efficient methods to
accurately determine concentration of a specific NT or a
group of NTs is, therefore, on the edge of the current
biomedical research. Speed, sensitivity, cost and real time
monitoring are the major factors responsible for the
efficiency of methods for quantitative measurements of NTs
in the central nervous system. Traditionally, concentrations
of NTs are determined using chromatographic and capillary
electrophoresis methods [4]. These techniques are complex,
time-consuming and are not easily adaptable for real-time
and in-situ monitoring. Moreover, their presence at very low
concentrations and variable levels provide a great challenge
for their detection, requiring that highly sensitive and
selective methods be available. A number of NTs, such as
the ones targeted in this project (e.g. DA, SA) are
electrochemically active and therefore they can be
determined directly by electrochemical means. Measurement
of neurotransmitters levels with voltammetry and carbon
electrodes is an example of this method [5, 6]. While
electrochemical sensors are fast, inexpensive and small,
interactions between NTs in real world mixtures may require
additional methods, such as automated pattern recognition,
to predict the concentration of each NT.

In general the proposed method belongs to the electronic
tongue technology which combines one or more electrodes
with pattern recognition algorithms that separate the “true”
signal from the detailed sensor response to complex, real-
world samples that typically contain interfering species.
Like the electronic nose, many of the applications of
electronic tongues are related either to environmental
monitoring, medical applications, or to food and beverage
production. Electronic noses/tongues have been used in
complex, real world environments where sensitivity as well
as specificity must be considered, such as detection of
chemical warfare agents, indoor air quality, and bacterial
classification [7-9]. Many electronic tongues employ
voltammetry for analyte detection at individual electrodes
[10].

Electrodes have previously been used before for
simultaneous detection of dopamine and serotonin in vivo
[5]. Although previous analyses showed the existence of
different patterns in the voltammetric readings for the
experiments with only one (serotonin or dopamine) or both
neurotransmitters present, they did not use this information
to predict the exact concentrations of neurotransmitters. The
contribution of this study is the ability to apply pattern
recognition methods to voltammetry data to accurately and
simultaneously predict the concentrations of several
neurotransmitters.
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II. DATA

The data was obtained by differential pulse voltammetry
(DPV). Conventional glassy carbon -electrodes (GCE)
electrodes were used to obtain voltammetric data for
dopamine (DA) and serotonin (SE) in three separate trials.
The experiment was conducted in the laboratory settings at
the Chemistry and Biomolecular Science Department. The
whole set of DPV data consisted of three trials where each
trial had 21 combinations of relevant concentration levels
for the two neurotransmitters (serotonin and dopamine). The
data was acquired with a bare GCE which had been polished
for 3 minutes with 0.3um alumina, sonicated in distilled
water for 5 minutes, and rinsed three times with distilled
water and then methanol each time. The differential pulse
voltammograms were done in a 0.1M solution of PBS with a
pH of 7.0. Pulse amplitude of 50mV, pulse width of 50ms
and pulse period of 200ms were employed.

The concentration of each neurotransmitter was held
constant started at 20 micromolars (uM), 40 and 60 puM
while the concentration of other neurotransmitter was
increased starting at 20 to 100 uM in with intervals of 20
puM. All together there were 63 voltammograms each
representing a combination of the two controlled
concentrations of DA and SE. An example of a
voltammogram is given in Fig. 1.

III. METHOD

The goal of this study is to use the multidimensional data
of the voltammogram to predict concentrations of both
neurotransmitters (serotonin and dopamine) at the same
time. This is a challenge since sensor produces mixed signal
from both substances present in the sample.

Votammetric data contained over 1000 measurements
(original features) per each combination of NTs. They all
contribute differently to the response variable and if used for
modeling altogether could cause overfitting and, therefore,
inadequate prediction. The process of extraction of the few
latent variables (dimensionality reduction) is a crucial step
toward efficient predictive model. Principal component
analysis (PCA) is a popular approach to this problem.
During PCA the major principal components that lie in the
direction of the greatest variance of the voltammetric data X
(predictors) are extracted, thus, retaining the most
information related to the data. Another suitable approach is
the partial least squares (PLS) regression. The goal of PLS-
regression is to extract components (latent variables) that lie
in the direction of, i.e. explain most of the covariance
between the predictors X (voltammetric measurements) and
responses ¥ (NTs concentrations) variables. This approach
is highly beneficial as captures the relationship between
predictors and responses while performing dimensionality
reduction.

The extracted features are then fitted into the simple linear
regression model using the training set. The PCA followed
by this step is called Principal Component Regression
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Fig. 1. Differential pulse voltammogram for a fixed SE level (60 pM),
changing SE level (20-100 uM). The interactive action of the two NTs on
the current’s response makes it hard to distinguish between individual
NT’s actions.
(PCR). Another approach applied to these data, PLS-
regression, combines the two steps of dimensionality
reduction and regression fitting. The constructed model is
tested on its predictive power using the validation set.

IV. RESULTS

For this study, two of the trials were taken for training
and the remaining one trial was considered as a validation
set. Although the controlled neurotransmitters concentration
levels were discrete values (20, 40, ..., 100 uM), the
predictive models produced real numbers which were
rounded to the nearest controlled level in order to estimate
the models’ performance. The performance was evaluated
using three coefficients: the rate of correct classification P
(fraction of correctly predicted classes, i.e. particular
neurotransmitter’s levels), the extended rate of correct
classification P” (fraction of correctly predicted classes,
where ranges for correct prediction were extended to include
one level above and below the true level), and the
coefficient of determination R’ reflecting the goodness of fit
of the linear regression built wusing extracted
components/latent variables.

The results of the application of PCR based on 7 principal
components are shown in Table I. This number of

TABLEI
BEST PCR MODELS PERFORMANCE
Training and DA
validation sets P P R?
PCRoOn  Tpining 1&2 05714 0.9286  0.6935
normalized  vyjidation 3 0.6190  0.8095  0.6084
data Training 1&3  0.5000  0.9286  0.6855
Validation 2 04762 09048  0.7101
Training 2&3  0.5000  0.9286  0.6855
Validation 1 04286 09048  0.6181
Training and SE
validation sets P P* R?
PCRon  Tpining 182 0.8571 1.0 0.8896
the original  vafidation 3 03333 0.9048  0.8390
data Training 1&3 0.8571 1.0 0.8896
Validation 2 0.5000  0.9524  0.8502
Training 2&3 0.6429 1.0 0.7987
Validation 1 0.4762 1.0 0.8359
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components was selected based on the significance of the
extracted components in linear regression and the best
accuracy of prediction in validation data sets. Separate
models were created for dopamine and serotonin. The
normalization (by centering and scaling using mean and
standard deviation (respectively) of each original feature
vector) of the data for the dopamine models improved the
results for the PCR method. Table I shows the best results
for the DA and SE models using PCR.

TABLEII
PLS MODELS PERFORMANCE

Training and DA

validation sets P P+ R’
Training 1&2 0.5952 0.9286 0.6459
Validation 3 0.5238 0.8571 0.5240
Training 1&3 0.4285 0.9048 0.6040
Validation 2 0.4286 0.8571 0.4710
Training 2&3 0.5952 0.9524 0.6003
Validation 1 0.1667 0.9286 0.5972
Training and SE
validation sets P pP* R’
Training 1&2 0.6905 1.0 0.9283
Validation 3 0.2857 0.7619 0.7933
Training 1&3 0.7857 1.0 0.9104
Validation 2 0.3333 0.8095 0.6509
Training 2&3 0.5476 0.9762 0.7518
Validation 1 0.3571 1.0 0.8745

The results of the simultaneous fitting and prediction of
both neurotransmitters by the PLS-regression based on 7
extracted latent variables are shown in Table II.

The overall results from PCR and the PLS-regression
provided the following accuracy for the neurotransmitters
concentration prediction. For PCR models the rates of
correct classification (P) for the validation sets ranged at 42-
62% (DA) and 33-50% (SE) while the average rates were
50.7% and 43.64% respectively. The extended rate sof
correct (P™s) for the validation sets ranged at 81-91% (DA)
and 91-100% (SE), with corresponding average values
87.3% and 95.24%. For PLS-regression correct
classification rates (P) ranged at 16.7-52.4% (average
37.3%) for DA and 28.6-35.7% (average 32.5%) for SE,
whereas P” values ranged at 85.7-92.9% (average 88%) and
76.2-100% (average 85.7%) respectively. Both methods
provided very similar linear fit as shown by coefficients of
determination (R?) for the training data sets. Fig. 2 shows an
example of the PCR model fitting of the original,
untransformed data. The plotting of actual versus predicted
concentration levels reveals good fit of the applied methods.
Similar plots for the validation sets demonstrate relatively
good predictive power of the models. An example is shown
in Fig. 3 for the first PCR model. Additional results were
obtained for prediction of the difference of the dopamine
and serotonin concentrations (DA-SE) using the same data.
Linear PCR provided a coefficient of determination of about
89%, thus, indicating a very good linear fit. These findings
suggest using information on the interaction between
different neurotransmitters in the prediction of actual
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Fig. 2. Fitting of the training data set for the first model, PCR on 7
components. 45 degree reference line indicates the perfect fit.

concentrations of neurotransmitters. The overall results of
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the study are very encouraging and, in general, support the
idea of accurate prediction of the neurotransmitters
concentrations using voltammetry.

V. CONCLUSION

In this study two pattern recognition methods (principal
component regression and partial least squares regression)
were applied to the data obtained by differential pulse
voltammetry using conventional glassy carbon electrodes for
two neurotransmitters: serotonin and dopamine, for the
purpose of prediction of neurotransmitters concentrations.
Both methods showed similar results in the study for
prediction of dopamine and serotonin with PCR providing
slightly better results for the validation sets, resulting in the
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average rates of correct classification of 50.7% (DA) and
43.6% (SE). The average extended rates of correct
prediction (including one level above and below the true
level) were 87.3% and 95.2% respectively. These findings
allow us to establish the lower bound for the subsequent
analysis of the similar data.

The following problems have complicated the analysis.
The experiments were subject to the passivation effect that
was not completely accounted for. Passivation is the
absorption of the reactive species to the electrode; when the
same electrodes are used for the next trial this causes the
reduction in sensitivity. This problem contributed to the
errors in prediction. The next stage of the predictive model
will incorporate the passivation of the electrode and thus
eliminate some of the problems that generate inadequate
analysis.

In addition, miniaturization of the sensor (e.g use of
carbon-fiber microelectrodes, Pt wire) and another choice of
the electrode material (carbon nanotubes, metal
nanoparticles used as modifiers) together with a more
careful optimization of the experimental conditions will
contribute to the accuracy of prediction of the concentrations
of neurotransmitters and are left for future work.
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