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Abstract—Most brain functional connectivity me-
thods in fMRI require a brain parcellation into func-
tionally homogeneous regions. In this work we pro-
pose a novel parcellation approach based on a spatial
hierarchical clustering, that provides clusters within a
multi-level framework. The method has the advantage
of producing several brain parcellations rather than a
single one from a fixed size-homogeneity criterion. Re-
sults obtained on real data demonstrate the relevance
of the approach. Finally, a connectivity study shows
the benefit of a prior multi-level parcellation of the
brain.

Index Terms—Functional Neuroimaging, Functio-
nal Connectivity, Parcellation, Hierarchical Cluste-
ring

I. Introduction

Mapping of active brain regions remains a major ob-
jective of functional Magnetic Resonance Imaging (fMRI)
studies. Another more recent and challenging one is the
analysis of the overall brain dynamics. Following the
definition of the functional connectivity by Friston [1],
several approaches have been proposed to identify func-
tional networks of interacting brain regions underlying
cognitive functions. Most methods used in functional
connectivity analysis search for significant links between
a set of regions composed of spatially connected voxels.
This set can be defined from a priori information, such
as anatomical knowledge or activation studies. Another
strategy, adopted in this paper, relies on a preliminary
parcellation of the brain into functionally homogeneous
regions([2], [3]).

Brain parcellation methods are based on a measure-
ment that assesses parcel homogeneity (Pearson’s cor-
relation coefficient [2], coherence [4],...) and a clustering
(or classification) method (e.g. fuzzy C-Means [5], region-
growing [2]). Nonetheless, all methods have to deal with
the same compromise between size and homogeneity of
the clusters : partitioning the cortex into many (small)
regions will lead to produce regions more homogeneous
than those obtained using less (and larger) regions. The
number of clusters can also be estimated using informa-
tion theoretic criteria and cross-validation [6].

In this paper, rather than defining one flat partition of
the brain into mutually exclusive (or disjoint) regions, a
multi-level parcellation of the brain is proposed where
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a voxel could belong to several regions at a time :
a (very) small region of (very) high homogeneity, and
one or multiple larger regions of lower homogeneity for
instance. The proposed parcellation method is based on a
multi-level framework that produces at each level a new
partition of the data.

II. Methods

The multi-level parcellation algorithm consists in com-
puting a series of dendrograms (a tree) (section II-
A), from which a partition of the data is derived by
thresholding (section II-B). The first dendrogram (level
1) is computed from the original data. The next ones
(levels i > 1) are iteratively obtained from a cluster-
based filtered version of the data (section II-C). The
filtering process at level i is performed using the clusters
obtained at level i − 1. From level to level, the effect of
filtering becomes more important, and clusters become
larger. The overall procedure is depicted in Fig. 1.

A. Spatial hierarchical clustering

At each level, the procedure computes a dendrogram
which is a top-down representation of the data : the
root of the tree is composed of the whole set of voxels
whereas each leaf represents a voxel, or equivalently a
preprocessed time-series. The composition rule of the
clusters is based on parental links : if node A is a parent
of node B, the cluster associated with A includes the
one associated with B. Finally, the vertical position of
a node in a dendrogram reflects the homogeneity of its
corresponding cluster. An example of a dendrogram is
depicted in Fig. 1[a].

The computation of the dendogram is based on the
hierarchical agglomerative algorithm (see [7]) : starting
from the leaves, two elements (leaves or nodes) are
grouped into one cluster if they have the closest distance
among the set of distances of element pairs which can
be grouped (an element pair may be grouped if each
element has never been grouped during the procedure).
Three distance measurements have also to be defined :
a between voxel distance, a cluster-voxel distance, and
a between cluster distance. The two last distances are
named aggregation distances.

In our approach, the between voxel distance, Dij , is
based on the Pearson’s correlation coefficient rij between
the fMRI time series at voxels i and j : Dij = 1 − rij .
This distance represents the similarity between signals :
it ranges from 0 (when rij = 1) to 2 (when rij = −1).
For the two aggregation distances, several possibilities
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Fig. 1. The brain multi-level parcellation procedure : [1] fMRI
data set, [2] data preprocessing, [a] construction of the dendrogram
based on hierarchical clustering, [b] estimation of the clusters by
FDR-based thresholding, [c] computation of the mean time-series
for each cluster, [d] construction of the new data set from the mean
time-series.

based on Dij are offered (see [7]). Here, the farthest-
neighbor method is used. It consists in selecting the
maximal distance in the set of the involved distances so
that i) the cluster-voxel distance between a voxel j and
a cluster C is defined as : Dj,C = maxk∈C{Dj,k}, and ii)
the distance between clusters C1 and C2 is defined as :

DC1,C2
= max

j∈C1

max
k∈C2

Dj,k

It follows from this definition that the homogeneity of a
region is guaranteed for a given distance. For example,
when considering cluster C3 in Fig. 1, the distance
between two elements of C3 cannot be greater than D3.

Once distances are defined, the computation of a den-
drogram is straightforward. However, to our knowledge,
hierarchical clustering approaches do not usually account
for spatial information. This could lead, in our case, to
aggregate brain clusters or voxels that are not spatially
connected. To cope with this problem, and guarantee the
aggregation of connected clusters only, distances between
non-neighboring elements are simply set to infinity, so
that no links can be inferred between two voxels (or
clusters) that are not spatially connected. Consequently,
each node in the dendogram represents one connected
component of the image.

B. Dendogram thresholding

Several approaches can be envisaged to infer a par-
cellation from a dendrogram (common methods are im-
plemented in the Matlab Statistical Toolbox). In our
approach, a minimal intra-cluster correlation rmin is gua-
ranteed, by selecting, from the dendogram, clusters that
present an aggregation distance inferior to the threshold
s = 1 − rmin and that are not included into a cluster
exhibiting an aggregation distance inferior to s (see Fig.
Fig. 1[b] for an example). The threshold s is computed
thanks to the false discovery rate (FDR) defined, in our
case, as the ratio of false aggregations to the number of
aggregations. A false aggregation occurs when two voxels
that do not belong to the same region are aggregated.
The estimation of the FDR is performed numerically.
First, the spatial hierarchical clustering algorithm descri-
bed above is applied to a synthetic volume of randomly
generated fMRI time-series, in order to obtain a den-
drogram in which each aggregation accounts for a false
aggregation. Then, for a given threshold s, the FDR is es-
timated by counting the number of aggregations obtained
for s in the dendrogram associated to the real data and
by estimating the expected number of false aggregations
(under the threshold s) in the same dendrogram thanks
to dendrograms obtained with synthetic data. The main
difficulty to simulate fMRI data is to model properly the
temporal and spatial correlations. In our case, a precise
estimation of the FDR is not so crucial since the objective
is to determine a subject-dependent threshold which only
provides small significant regions (namely, regions which
could be aggregated with other regions in other levels).
Consequently, and for the sake of simplicity, fMRI signals
were simulated as independent gaussian white noise.

C. Multi-level parcellation

As illustrated in Fig. 1, the spatial hierarchical clus-
tering (step [a]) and the dendrogram thresholding (step
[b]) are successively and iteratively performed to yield,
at the output of each iteration, a new level of brain
parcellation. For the first parcellation level, preprocessed
fMRI signals are used as input data (step [2]). For the
next ones, an adaptive cluster-based filering procedure is
carried out (step [c] and [d]). More precisely, the signals
composing each cluster of level i− 1 are replaced by the
mean signal of the cluster (step [c]). This filtered dataset
is then used as a new input dataset for level i (step [d]).
The multi-level parcellation steps are carried out until
a final steady parcellation is reached, that is, when the
brain parcellations of levels i and i− 1 become identical.

Finally tone can easily notice that clusters become
larger as iterations increase : if two regions Ri and
Rj are obtained respectively at level i and j (j > i),
Rj ∩ Ri 6= ∅ ⇐⇒ Ri ⊆ Rj , i.e. if one voxel from Ri

belongs also to Rj , and (j > i), then Ri is a subregion
of Rj .
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III. Experimental Results

A. fMRI data

The multi-level parcellation method was applied to real
fMRI data acquired on a 2-T whole body S200 Bruker
MRI system with a head volume coil, using echo-planar
imaging (EPI) with an axial slice orientation. In this
study, 7 subjects were asked to perform event-related
working memory tasks. For each subject, 6 sequences of
158 3-D scans were acquired (64 × 64 × 28 voxels, voxel
size : 4 × 4 × 4mm, TE/TR : 43 ms/2.9 s).

Prior to the parcellation, the 6 fMRI scan sequences
associated to a subject were processed separately using
the following steps : registration of all scans to the first
scan, movement and physiological noise correction using
an ICA procedure, trend removal using second order
polynomial fit, temporal bandpass filter with a passband
of 0.001 to 0.1 Hz, normalization of the fMRI signal (unit
variance). Then, a single sequence of 6 x 158 fMRI scans
was derived for each of the seven proceeded subjects
by registering the mean fMRI scans associated to each
sequence. A segmentation procedure was finally used to
keep the voxels corresponding to the gray matter.

B. Activation study

In order to highlight our multi-level parcellation
approach, a brain functional activation study was
conducted within the general framework of SPM
(www.fil.ion.ucl.ac.uk/spm). The objective was to com-
pare the influence of the cluster-based filtering used in
our parcellation procedure with respect to the Gaus-
sian spatial filtering traditionaly used in SPM. To this
end, and for each of the seven subjects, standard fixed-
effects activation studies were performed using SPM5
from 6 different datasets. The first data set, DS0, was
obtained at the output of the preprocessing step, that
is, without any spatial filtering. Then, two spatially
filtered versions of DS0, denoted DSG6 and DSG8, were
obtained by applying Gaussian spatial smoothing to DS0
with FWHM (Full Width at Half Mean) of 6 mm for
DSG6, and of 8 mm for DSG8. Finally, for comparison
purposes, three cluster-based filtered versions of DS0,
namely DSL1, DSL2, and DSL3, were considered, each
one corresponding to the level 1, level 2, and level 3 of
parcellation of DS0, respectively.

An illustrative example of the obtained results is re-
presented in Fig. 2. It shows in a lexicographic order, an
axial section of the t − test activation maps obtained
with the data sets DS0, DSG6, DSG8, DSL1, DSL2,
and DSL3. To facilitate their analysis, the t− test maps
illustrated in Fig. 2 are visualized before thresholding.

The results obtained without spatial filtering
(Fig. 2(A)) are not satisfactory since only a few
voxels have a significant t-test value (21 voxels present
a t-test value greater than 3). When Gaussian spatial
prefiltering of the data is used (Fig. 2(B,C)), results are
clearly improved (resp. 36 and 91 voxels have a t-test

Fig. 2. t − test maps of a representative subject obtained using
SPM5 with : (A) the non-spatially-filtered dataset DS0, (B,C)
the Gaussian filtered data sets DSG6 (FWHM=6mm) and DSG8
(FWHM=8mm, (D,E,F) the cluster-based filtered data sets DSL1,
DSL2, and DSL3 (see text).

value greater than 3). Though the Gaussian spatial
filtering reduces noise while increasing the significance
of the activated voxels, this kind of filtering suffers from
a major well-known limitation illustrated in Fig. 2(C) :
it tends to blur the activated area (see the upper right
panel), while limiting the precision of their localization.
In extreme blurring conditions, two activated areas
separated by a small distance w.r.t. the FWHM can be
grouped into one single region, or a small activated area
w.r.t. the FWHM may not be detected.

In contrast, our multi-level parcellation approach blurs
less activated areas. In particular, the upper right panel
of Fig. 2(E, F) shows two activated areas whereas a
unique activated area is observed in the corresponding
panel of Fig. 2(C). On first analysis, one could attribute
this result to an underdetection of activation, but acti-
vation maps obtained with our approcach exhibit much
more significant voxels (resp. 57, 151 and 357 for DSL1,
DSL2 and DSL3). More generally, when considering all
subjects, the mean amount of significant voxels (t-test va-
lue > 3) is resp. of 21, 82, and 162 voxels for the datasets
DS0, DSG6 and DSG8. With the multi-level parcellation
approach, those amounts are increased resp. to 85, 152
and 291 for the datasets DSL1, DSL2 and DSL3. These
good results demonstrate that the cluster-based filtering
used in the multi-level parcellation approach takes better
into account spatial information, essentially because it is
applied to delimited homogeneous area.

Fig. 2(D,E,F) also shows some activated regions that
appear or disappear across levels. The former pheno-
menon can be explained by the fact that merging a
priori inactive clusters could enhance the mean activity
of the resulting cluster by noise reduction. The latter
phenomenon can be explained by the merging of active
clusters with inactive or less active voxels, which tends
to reduce the mean activity of the resulting cluster.
Both phenomena demonstrate the interest of a multi-
level brain parcellation rather than one flat partition.

Finally the images obtained by surperimposing parcels
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Fig. 3. Illustrative regions obtained with the parcellation process
(2 regions, A and B). Top : axial and sagital sections of the
anatomical scan. Bottom : two regions (red or blue) obtained by
the proposed approach.

on anatomical scans demonstrate in many ways the
validity of the clustering approach. First the cluster
shape fits the brain anatomy : many clusters follow the
shape of a sulcus which can be considered as functionally
homogeneous at least at the resolution allowed by our
data. Second, the locations of the significant clusters are
usually in good agreement with the stimulation paradigm
used (verbal working memory) : left inferior frontal sulcus
(Fig. 3(B)) or the Sylvian sulcus (Fig. 3(A)). Finally, a
sharp contrast is observed between the significance of the
relevant cluster and its surroundings, in accordance with
the functional segregation of function in the brain.

C. Towards functional connectivity

This last experiment illustrates, in a prospective man-
ner, how a functional network can be derived from a
multi-level brain parcellation. To this end, clusters of a
size of less than 60 or greater than 600 voxels are neglec-
ted because they are physiologically inappropriate. Then,
only links between disjoint clusters are considered. Ap-
plied to the previous case study, these two criteria lead to
a total of 10987 possible links between 151 brain parcels.
Note here that despite multiple parcellation levels used
to investigate brain functional connectivity, the number
of potential links to handle remains tractable. Since
we search for networks of clusters for which the neural
activities show interactions related to the cognitive tasks,
the measurement of an interaction between two clusters
is computed as the Pearson’s correlation coefficient of
their representative fMRI time-series, weighted by the
paradigm. Finally, significant links with a non-corrected
p-value of 10−5 are retained (this p-value is estimated

as previously by simulating fMRI signals). The resulting
functional network is depicted in Fig. 4.

Fig. 4. 3-D representation of the functional network, regions colors
are set arbitrary

It is composed of 5 brain regions issued from 3 distinct
parcellation levels, namely the first three ones. Similar
results were obtained for the six other subjects. Though
their neurocognitive interpreation is still under progress,
these preliminary results demonstrate the relevance of a
multi-level parcellation of the brain.

IV. Conclusion

A new parcellation approach has been proposed within
the context of functional brain connectivity analysis.
In this approach, the size-homogeneity compromise is
relaxed within a multi-level framework by yielding se-
veral levels of brain parcellation rather than a unique
one. Moreover, the Gaussian spatial filtering traditionally
applied to the raw fMRI data is replaced by an adaptive,
and iterative“cluster-based”smoothing that prevents the
traditional blurring effects.
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