
 

  

Abstract—A method for constructing a per
medium protocol at contrast enhanced
Angiography (CCTA) is presented. A o
pharmacokinetic model is parameterized and
minimal data set from a test-bolus injection
optimization is performed to construct a prot
target enhancement in the cardiac structure
demonstrating the method’s ability to achi
chosen image enhancement levels while r
medium dose are presented. 
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bolus propagates from the peripheral venou
the central arterial circulation it is disperse
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Because the attenuation of the X-Rays i
to the blood-plasma concentration of the co
luminal enhancement pattern of blood 
follows that of the contrast bolus, result
pattern that occurs some time after the en
injection and whose peak and full width a
(FWHM) are a function of the patient’s c
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concentration of the contrast media[1]. 
delivery method of contrast material pe
considers these pharmacokinetic and
conditions of each patient. Typically, every
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volumetric flow rate. 
 A timing bolus injection (10-20 ml prior 
scan) is often used in clinical practice to 
acquisition with the arrival of the contrast
timing bolus procedure a single-level sca
performed for 10-30 seconds, typically at
pulmonary trunk. The scanner operator dr
Interest in a vascular territory such as the
(Ao). The scanner software copies the ROI 
in the timing bolus data set (see Figure 1
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mathematical model is very similar to one proposed by 
Dawson and Blomley [4]. Their model was not proposed for 
use in a per-patient computation paradigm, rather it was 
presented as a vehicle to explore general principles of 
contrast medium enhancement.   

The input parameters to our PK model are the contrast 
concentration, flow rate and duration of the injection. We 
use four point metrics - the time to peak and peak 
enhancement of two TECs obtained during the timing bolus 
acquisition to derive estimates of the cardiac output and 
blood volume. Cardiac output and vascular blood volume are 
the two key parameters affecting contrast bolus propagation 
and enhancement at CT Angiography [1, 4].  

 A direct search minimization is performed to identify 
values of injection duration and flow rate that minimize a 
cost function.  
 

A. Pharmacokinetic Model 
 

Equation (1) describes the distribution of contrast material 
in the central blood compartment resulting from injection 
into a peripheral injection site. The origin, t=0, corresponds 
to the time at which the contrast material arrives in the 
region of interest. In (1),  Qinj [ml/s] is the injection flow 
rate, Tinj [s] is the injection duration, QCO is the cardiac 
output [ml/s], VB is the blood volume between the injection 
site and measurement point [ml], Ci is the concentration of 
the stock contrast medium, and Co is the blood concentration 
of the agent at time t. 
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A TEC measured in the ascending aorta from a timing bolus 
injection is annotated as sAO(t) [HU]. sPA(t) is the TEC 
measured in the pulmonary artery trunk.  Tinj is the injection 
duration.. KHU_mgI is the conversion factor relating HU to 
concentration of Iodine in vivo at the measurement location. 
There is a linear relationship between a TEC and the blood-
contrast concentration  [mgI/ml]: 
 

_

_

( )( )

( )( )

AO
AO

HU mgI

PA
PA

HU mgI

s tC t
K

s tC t
K

=

=
 (2) 

 
We use 27.1 HU/(mgI/ml) as the default value for  KHU_mgI , 
and near the range (21-26 HU/(mgI/ml)) published by 
several investigators [5-7]. Our value was computed by a 
calibration experiment prior to clinical experiments. 
 

B. Parameter Estimation 
 

To use our governing model for patient-specific diagnostic 
protocol generation, estimates of cardiac output (QCO) and 
blood volume between the injection site and measurement 
point (VB) are necessary.   

Because we are only considering a limited number of point 
metrics (such as the time of peak contrast enhancement)  
from the timing bolus TECs instead of the entire curves, 
there is only one data point on each concentration curve 
available, and the system is underdetermined.  We 
approximate acquiring two points on a single curve by 
combining the data points on the individual curves from 
each structure, which is valid given a set of simplifying 
assumptions.     

First, we assume the blood volumes are the same in both 
compartments so the concentration is equivalent to the 
amount of iodine in the compartment (otherwise, the system 
is still underdetermined with two equations and three 
unknowns).  Second, we restrict the system to two single 
compartments where the peak enhancements and times to 
peak are measured.  The contrast is injected, flows into the 
pulmonary artery, flows into the ascending aorta, and then 
flows out. Loss of iodine in an intermediate compartment 
(such as the lungs) is ignored. This is a similar treatment as 
Harris and Heath give in [8] when describing a technique to 
measure blood volume using dye dilution. The simplified 
model yields Co(t) curves similar to those shown in Figure 2. 
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Figure 2 Sample concentration curves resulting from a small or 
“test” bolus injection, where times to peak and peak 
enhancements are labeled.  

The available measurements from the 2 TECs are C1PA, T1 
(peak time of CPA), C2AO, and T2 (peak time of CAO).  We 
assume that the maximum value of each concentration curve 
is C(Tinj). At t=T1, C1PA*VB milligrams of iodine are present 
in the pulmonary artery.  The total mass of contrast in the 
pulmonary artery at T1 is less than the amount in the test 
bolus because some has already flowed into the ascending 
aorta.  At t=T2, C2AO*VB milligrams of iodine are present in 
the ascending aorta. The peak in the ascending aorta curve at 
T2, C2AO, is less than the pulmonary artery peak because a 
portion of the bolus is still in the previous compartment.  
Therefore, the magnitude of C2PA can be approximated by 
the difference in peaks: 
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2 1 2PA PA AOC C C≈ −  (3) 
 
The peak of the pulmonary artery curve is defined by: 
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The expression for C2PA on the downslope is then:   
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 and solving for VB  in  (5) yields: 
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We can now isolate QCO: 
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C. Optimization and Protocol Generation 
 

Two parameters must be set by the clinician:  the desired 
peak concentration and the target concentration. The target 
concentration is defined as the concentration at the start and 
end of the scan window. In our model, CLH-Peak occurs Tinj1 
seconds after the contrast arrives in the left heart (TLH_arr) 
(see Figure 3).   

The scan begins at Tstart, on an unknown point on the 
upslope of the left heart concentration curve. It is the task of 
the protocol generation algorithm to determine the scan start  
time in relation to the predicted contrast enhancement 
profiles.  The scan ends ΔT seconds later, where ΔT is the 
diagnostic, CT scan duration and falls on the downslope of 
the LH enhancement curve. The scan duration is a function 
of the scan length, heart-rate and other parameters of the 
imaging procedure. 

To compute a protocol resulting in contrast concentration 
(and therefore contrast enhancement) of CTarget throughout 
the scan duration, we construct a cost function that penalizes 
the peak and target enhancements. The volume of contrast 
material is the product of the administration flow rate, Qinj 
and the duration of the injection, Tinj.So, if we determine 
values of the duration and flow rate at which the cost  
function is minimized, we are computing a minimum 
volume sufficient to satisfy the clinical targets. We search 

for the parameters Tinj and Qinj that minimize the cost 
function in (8): 
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where CPDesired and CTDesired are the desired peak and target 
enhancement in the left heart structures. To find Q*inj and 
T*inj, the error function must be defined in terms of Qinj, Tinj, 
and identified parameters.  This is already true by definition 
for CPeak: 
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The value of CTarget on the upslope is also a function of Tstart, 
the unknown time at which the scan begins: 
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On the downslope, CTarget is the concentration at the end of 
the scan, which is a function of CPeak and Tstart (assuming the 
scan duration, ΔT, is fixed and known): 
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Figure 3 Relative timing and interrelationship among the 
injection protocol, the CT scan, and the enhancement of 
contrast in vivo. RH = Right Heart structures, LH = Left Heart 
structures (including coronary arteries). 
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Substituting in for CPeak and simplifying yields: 
 

( ) ( )
^ ^

^ ^

^

CO CO
start inj start

B B

Q QT T T T T
inj V V

Target i

CO

Q
C C e e

Q

− −+Δ − +Δ
⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎝ ⎠

 (12) 

 
We now have two equations (CTarget on the upslope and the 
downslope) and two unknowns (CTarget and Tstart).  After 
solving algebraically for CTarget, we have the following 
expression in terms of only Qinj, Tinj, and known constants: 
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Note that if Tinj >> ΔT, CTarget approaches the numerator 
(CPeak), and if ΔT >> Tinj, CTarget goes to zero. We now 
substitute equations (13) and (9) into (8) and find the 
parameters that minimize the cost function.   

We chose to implement a brute force search strategy 
because the parameter range is well defined, the solution 
manifold is well behaved and the computational burden 
needed to search for the minimum is insignificant, especially 
realizing that a computation time of several seconds in the 
interval between parameter entry and protocol generation 
has no impact on the procedure 
 

D. Clinical Validation 
 

We conducted an IRB approved clinical investigation at 
the Medical University of South Carolina to evaluate the 
effectiveness of the personalized contrast protocol technique. 
32 patients undergoing contrast (300mgI/ml, Iopromide, 
Bayer Healthcare) enhanced coronary CT (Definition DS, 
Siemens Medical) gave informed consent and were included 
in the study. A desired Left Heart target enhancement level 
(CTDesired*KmgItoHU in (8) ) was set at 250 HU for all subjects 
and 300 HU was set as the desired peak Left Heart 
enhancement in (CPDesired*KmgItoHU in(8)). Quantitative 
measurements of contrast enhancement in the proximal, mid 
and distal segments of the Left Main (LM), Left Anterior 
Descending (LAD), Left Cirumflex (LCx), and Right 
Coronary arteries (RCA) were made by averaging three 
ROIs placed in each structure. Additionally, attenuation 
measurements were made in the Ascending Aorta (Ao). The 
overall CM volume and injection rates were compared to the 
clinical contrast delivery protocol at MUSC, which is based 
on scan duration only, at a fixed flow-rate of 6cc/sec. 
 

III. RESULTS 
 

The mean (+/-SE) CM volume with use of the individualized 
injection protocol was 63.8±3.8ml, with a mean injection 
rate of 4.1±0.2ml/sec. The mean CM volume in the same 
patients, using the routine clinical protocol, would have been  
significantly (p<0.01) higher at 82.1±3.9ml. Thus, a mean 
CM savings of 18.3±4.3ml was achieved. The mean (+/-SE) 
attenuation in the ascending aorta and LM were 261.7±9 and 
277.5±8.9HU, respectively. Mean attenuation (+/- SE) in the 
proximal, mid and distal segments of the LAD, LCx and 
RCA are given in Table I. 
 

Table I Coronary Artery Enhancement Results 

Coronary Artery 
Structure 

Mean Contrast 
Enhancement [HU] 

Standard Error of the 
Mean 

LAD-proximal 278.0 9.8 
LAD-mid 254.7 11.2 
LAD-distal 259.0 11.5 
LCx-proximal 269.7 9.1 
LCx-mid 245.5 10.4 
LCx-distal 233.0 8.2 
RCA-proximal 273.6 8.9 
RCA-mid 273.6 9.4 
RCA-distal 275.0 12.0 
 
The LM, LAD, proximal and mid LCx, and the entire RCA 
had significantly higher attenuation than 250HU (p<0.05, 
Wilcoxon signed-rank test).  

IV. DISCUSSION 
Our proposed methodology was validated on a small 

cohort of subjects. Only the distal LCx did not achieve 
contrast enhancement greater than the specified target, and 
local hemodynamic effects in the narrow, distal branches of 
the vessel may have led to this finding. We demonstrated an 
ability to reduce the average contrast dose, a critically 
important issue in the management of patients with renal 
insufficiency. 

Future investigations will study the ability of our 
technique to achieve enhancement at larger enhancement 
values because 250HU is the minimally accepted contrast 
enhancement level for CCTA. Additional research will also 
be taken to determine if algorithmic modifications may be 
made to target the right heart structures by incorporation into 
the cost function.   
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