
  

  

 
Abstract—Optimal noise control is important for improving 
image quality and reducing radiation dose in computed 
tomography.  Here we investigated two image space based 
nonlinear filters for noise reduction: the bilateral filter (BF) and 
the nonlocal means (NLM) algorithm. Images from both 
methods were compared against those from a commercially 
available weighted filtered backprojection (WFBP) method. A 
standard phantom for quality assurance testing was used to 
quantitatively compare noise and spatial resolution, as well as 
low contrast detectability (LCD). Additionally, an image dataset 
from a patient’s abdominal CT exam was used to assess the 
effectiveness of the filters on full dose and simulated half dose 
acquisitions. We found that both the BF and NLM methods 
improve the tradeoff between noise and high contrast spatial 
resolution with no significant difference in LCD. Results from 
the patient dataset demonstrated the potential of dose reduction 
with the denoising methods. Care must be taken when choosing 
the NLM parameters in order to minimize the generation of 
artifacts that could possibly compromise diagnostic value. 

I. INTRODUCTION 

 
HERE is a growing concern regarding the amount of 
radiation dose associated with medical imaging 

modalities such as those based on X-rays (i.e. radiography 
and computed tomography) or γ-rays (i.e. SPECT and PET) 
[1,2]. Unfortunately, in X-ray based modalities such as CT, 
there is a fundamental tradeoff between dose and image 
quality:  the larger the dose the better the image quality (i.e. 
lower noise, better low contrast detectability, fewer artifacts). 
As a result, it is imperative to carefully optimize and manage 
exam protocols to ensure that the dose delivered to the patient 
in CT examinations is as low as possible, while ensuring 
appropriate image quality. 

There exist several different strategies one might use to 
lower the dose in CT. The first one is related to improvement 
in the hardware components of the scanners, such as more 
sensitive and efficient detectors [3], or by the use of different 
acquisition geometries [4]. Recently, CT scanners have 
included automatic tube current modulation that works both 
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angularly and along the z-axis direction to provide significant 
reductions in dose [5]. As another route, the filtered 
backprojection process that CT scanners offer for image 
reconstruction allows the user to employ different kernels that 
target different image qualities in the reconstructed images. 
Typical kernels are roughly divided into smooth and sharp 
kernels. The smooth kernels reduce the noise but decrease 
spatial resolution, whereas sharp kernels maintain better 
spatial resolution but have higher noise [6]. A third possibility 
for improvement of image quality is the use of iterative 
reconstruction algorithms [7], which allow for accurate 
modeling of system geometry, physical effects like beam 
hardening, scatter, and incomplete data sampling. Although 
iterative reconstruction holds the promise of becoming the 
trend in future CT scanners, it is currently limited by the very 
large number of computations needed, usually requiring 
several hours to reconstruct a single dataset in specialized 
hardware.  

Denoising algorithms applied to either the projection or 
image space data have been proposed for lowering the dose in 
CT. Projection space methods to reduce noise in the 
sinogram, prior to image reconstruction, include the use of the 
iterative penalized weighted least square method [8], 
multi-dimensional adaptive filtering [9], and bilateral 
filtering [10]. The advantage of projection space denoising to 
image space, is that, after an appropriate data transformation, 
it is possible to approximate a Poisson-like model for the 
photon counting process. In contrast, there exists no certain 
noise model in the image space for CT imaging. Still, 
projection space denoising methods requires access to raw 
projection data and image reconstruction capabilities, 
limiting its use in clinical practice unless included in the 
commercial scanner workflow. 

Various edge preserving algorithms have been proposed 
for image denoising in CT, including non-linear adaptive 
filtering [11] and wavelet based [12] methods. Here we focus 
our attention on the use of two edge preserving filters: the 
bilateral filter (BF) [13] and the more recently introduced 
nonlocal means (NLM) algorithm [14]. These methods are 
fast (compared to iterative methods), easy to implement, and 
do not require raw projection data. Furthermore, we compare 
the spatial resolution and Low Contrast Detectability (LCD) 
of the BF and NLM with conventional weighted filtered 
backprojection algorithms (WFBP) available with 
commercial scanners.   

The paper is organized as follows: section II explains the 
theory of the BF and NLM algorithms; section III describes 
the experiments performed and includes details of the 
datasets used. Section IV presents the results with several 
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examples comparing the BF and NLM with WFBP; finally, 
some general recommendations and discussion are included 
in Section V. 

II. THEORY 

A. The Bilateral Filter 
The formulation of the BF for noise reduction states that 

each pixel is replaced by a weighted average of its neighbors, 
as for example is done with the convolution of an image with 
a Gaussian filter. However, for edge preservation, the BF also 
takes into account the variation of pixel intensities. As a 
result, spatially close pixels are averaged only if their 
intensity values are similar, while dissimilar intensity values 
tend to be preserved [10,13].  

First, consider that each pixel x[k] is replaced by a weighted 
sum W[k,n] of its neighbors and stored in y[k]. 
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The weight W[k,n] is a product of the spatial and intensity 

weights, (2) and (3) respectively. 
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From (2) and (3), notice that the two key parameters needed 
for the BF are σs and σi, which control the spatial and intensity 
weighting respectively. 
 

B. The Nonlocal Means Filter 
The NLM algorithm is a nonlinear spatial filter that adjusts 

the intensity value of each pixel using a weighted average of 
other pixels’ intensities based on the similarity of their 
neighborhoods or “patches” to the patch around the pixel 
being adjusted [14]. Although these neighborhood 
comparisons can be performed between pixels located any 
distance apart in an image, for computation speed, the 
comparisons are usually limited to a specified search window 
around the pixel whose value is being adjusted.  
Mathematically, this process can be described as follows: 
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where y[k] is the new pixel value at coordinate k, CN is a 
normalization constant, SW is the search window centered at 
k,  x[k-n] is the original pixel value at the (k-n) coordinate 
within the search window, and W[k-n] is the weight given the 
intensity value of x[k-n]. The weights are calculated as: 
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where P is the patch size around each pixel that is compared, 
KG is a Gaussian kernel used to give patch pixels further from 
the center less weight in the similarity calculation, and h 
adjusts the intensity similarity-to-weight relationship. h can 
be considered a smoothing parameter, such that as it is 
increased, more dissimilar patches are given a higher weight, 
allowing for more averaging/smoothing. For the case when n 
= 0, W[k] is set equal to the maximum of the other calculated 
weights within the search window in order to prevent giving 
too much weight to the original pixel value at k. CN is then 
calculated to be the sum of the weights W within the search 
window. This algorithm, then, has the adjustable parameters 
of search window size SW, patch size P, and smoothing 
amount h. 

III. EXPERIMENTS 
 

An image quality phantom (CATPHAN, Phantom Labs) 
was scanned using a dual-source CT scanner (Siemens 
Definition DS) with a routine abdominal protocol: 120 kV, 
64x0.6 mm collimation, pitch = 0.8, and 240 (full dose) and 
120 (half dose) effective mAs. Images were reconstructed 
using the scanner standard WFBP algorithm with B10, B20, 
B30, B40, and B45 kernels at 2 mm thickness and 2 mm 
position increment. The B45 image, which is expected to 
have higher spatial resolution, but also higher noise relative to 
the other kernels, was used as the starting image to apply the 
BF and NLM. 

To compare the filters, we used the high-contrast spatial 
resolution HCSR (in lp/cm) module, as well as the low 
contrast module to assess low contrast detectability (LCD). It 
is already known that edge preserving methods such as the BF 
and NLM are effective in preserving strong edges. However, 
for CT it is crucial that they do not blur or eliminate low 
contrast objects, which are not necessarily comprised of 
strong edges.  

To approach a more realistic scenario than a phantom 
model, we used a de-identified study from a patient scanned 
with a dual-source CT scanner (Siemens Definition DS) with 
the routine abdominal protocol: 120 kV, 64x0.6 mm 
collimation, pitch = 0.8, and 240 (full dose) effective mAs. A 
half dose dataset was simulated by inserting Poisson noise in 
the projection space before reconstruction. The noise 
insertion method used does take into account tube current 
modulation as well as the bowtie filter. Both datasets were 
reconstructed using the B45 kernel and 2 mm slice thickness.  

For the purpose of more closely examining image 
sharpness, we used line profiles from low and high contrast 
regions. 

The full and half dose abdominal images were filtered with 
varying parameter values for each algorithm. A radiologist 
was asked to select the best parameter values for each case. 
The chosen values were then used to process both the 
phantom and abdomen datasets at full and half dose. Because 
optimal parameter values are extremely difficult to define in 
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CT, we used radiologist input to evaluate appropriate 
diagnostic quality.  An excessively smoothed medical image 
may look better to the untrained eye, but could have 
potentially diagnostic information blurred away. 

IV. RESULTS 

A. Selected parameter values 
For the bilateral filter, the parameter values selected were 

window size 5x5 pixels, σs = 0.6 for both half and full dose 
but with different intensity weighting parameter σi=0.026 and 
σi=0.021 respectively. Note that the BF implementation 
normalized image intensities from 0 to 1. For both the half 
and full dose cases, the parameter values selected for the 
NLM processed images at full and half dose were search 
window SW = 5x5 pixels, patch size P = 3x3 pixels, and 
smoothing value h=100.   

B. Phantom 
The phantom dataset confirmed the known tradeoff 

between spatial resolution and noise when using different 
kernels in WFBP; the lower the noise (e.g. B10), the lower the 
spatial resolution (see Fig.1). However, both the BF and 
NLM algorithms were able to keep similar spatial resolution 
as the B45-WFBP, while lowering the noise. As expected, the 
full dose images had lower noise than their half dose 
counterparts for the WFBP, BF, and NLM. When the low 
contrast module was studied, we found no significant 
difference in LCD among the WFBP, BF and NLM. Results 
indicated average LCD up to 3 mm and 7 mm for the 10 HU 
and 5 HU target diameters respectively for the full dose case. 
The average LCD were 6 mm and 9 mm for the 10 HU and 5 
HU target diameters respectively for the half dose case. 

C. Patient dataset 
According to a radiologist, when using optimized 

parameters for both BF and NLM, the image quality of the 
processed images compared favorably with their 
corresponding original image (either full dose or half dose), 
mainly due to noise reduction without a significant increase in 
artifacts or blurriness. Moreover, the image quality of the half 
dose processed images approached that of the full dose 
images, as seen in Fig 2. 

To assess the sharpness of the images, we compared the 
line profiles in a high contrast region (HCR) and a low 
contrast region (LCR), shown in Fig 3. The profiles for the 
HCR were very similar, indicating that strong edges were 
well preserved even though the BF and NLM filters reduced 
the image noise. For the LCR, the full dose profiles clustered 
together, as did the half dose profiles. Notice that the profiles 
for the BF and NLM follow the variations of the WFBP data, 
although a slight amount of smoothing is present as expected.  

V. DISCUSSION 
 
We found that both the BF and NLM methods were able to 

improve the tradeoff between high-contrast spatial resolution 

and noise when compared against analytical WFBP methods. 
There was no significant difference for LCD, which is crucial 
to guarantee that low contrast objects (weak edges) are not 
smoothed in the filtering process.  

The half and full dose patient datasets processed with the 
BF and NLM showed a significant improvement in image 
quality compared to their unfiltered counterparts, based on 
radiologist observation and supported by line profile 
examination. Half dose images approached full dose quality, 
as judged by a radiologist for the patient dataset studied. The 
same observation was found quantitatively with the phantom 
data since the half dose dataset filtered with BF and NLM 
decreased the noise to a level comparable to full dose, while 
keeping good spatial resolution and no significant change in 
LCD.  

In spite of the fact that NLM was able to reduce the noise 
while preserving edges and contrast information, we found 
that, depending on the parameter values used, it often 
produced an organized noise pattern artifact which could 
significantly compromise image quality and diagnosis. 

In contrast to nonmedical filtering applications, the noise 
reduction in CT should carefully balance the amount of 
smoothing to still maintain diagnostic value. We found it very 
challenging to recommend a single set of parameters which 
would guarantee optimal results for the BF and NLM filters. 
We foresee that in an ideal scenario for image space 
denoising, a system would be required that is able to provide 
radiologists with real-time feedback, analogous to changing 
window levels, but rather changing ‘sharpness-smoothing’ 
levels in the images. Practical implementation of such a 
scenario would require, however, an optimized 
implementation of the BF and NLM algorithms, as well as 
specialized hardware to speed up computations. The resultant 
preferred parameters would need to be archived for future 
use, which presents considerable practical complexities, 
especially for image archival and retrieval systems. 
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Fig. 1.  Spatial resolution, low contrast detectability, and noise measurements using two CATPHAN modules scanned with full (240 mAs) and half dose (120 
mAs). (a) Original full dose high contrast module. (b) Original full dose low contrast module. (c) Chart comparing noise vs. spatial resolution as determined 
after reconstruction with the B10-B45 kernels and further NLM/BF processing of the B45 reconstruction.  These values were found for the 120mAs and 240 
mAs scans of the high contrast module. 
 

 
Fig. 2. Comparison of full dose (FD) and half dose (HD) abdomen slices (a) HD [B45] (b) HD, NLM processed (c) HD, BF processed (d) original FD. 
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Fig. 3. Line profile comparison from conventional WFBP (B45) with BF and NLM filters in an abdomen dataset (a) Original full dose image (b) High contrast 
line profile (c) Low contrast line profile.  
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