
 

 

 

  

Abstract – The major hurdle for segmenting lung lobes in 

computed tomographic (CT) images is to identify fissure 

regions, which encase lobar fissures.  Accurate identification of 

these regions is difficult due to the variable shape and 

appearance of the fissures, along with the low contrast and high 

noise associated with CT images.  This paper studies the 

effectiveness of two texture analysis methods – the gray level 

co-occurrence matrix (GLCM) and the gray level run length 

matrix (GLRLM) – in identifying fissure regions from isotropic 

CT image stacks. To classify GLCM and GLRLM texture 

features, we applied a feed-forward back-propagation neural 

network and achieved the best classification accuracy utilizing 

16 quantized levels for computing the GLCM and GLRLM 

texture features and 64 neurons in the input/hidden layers of the 

neural network.  Tested on isotropic CT image stacks of 24 

patients with the pathologic lungs, we obtained accuracies of 

86% and 87% for identifying fissure regions using the GLCM 

and GLRLM methods, respectively. These accuracies compare 

favorably with surgeons/radiologists’ accuracy of 80% for 

identifying fissure regions in clinical settings. This shows 

promising potential for segmenting lung lobes using the GLCM 

and GLRLM methods. 

 

Keywords – texture analysis, GLCM, GLRLM, lungs, lobar 

fissures, isotropic CT images. 

I. INTRODUCTION 

UNG cancer is the number one cause of cancer death in 

North America [1].  Its most effective treatment is 

lobectomy (surgical removal of diseased lung lobes).  For 

preserving maximal lung function, this treatment depends on 

the precise assessment of the spatial relationships among 

cancer, lung lobes and other major anatomic structures.  To 

perform this assessment, surgeons/radiologists routinely rely 

on reading two-dimensional (2D) clinical computed 

tomographic (CT) images (~ 3.0 mm in thickness).  Reading 

clinical CT images is tedious, due to their single viewpoint 

and monotonic shades of gray, as shown in Fig. 1(a). 

Using virtual reality technologies, three-dimensional (3D) 

visualization of lung cavities is becoming feasible for surgical 

planning of treating lung diseases [2].   Compared to 2D 

clinical CT images, 3D visualization offers unconstrained 

viewpoints, colors and no need of mental reconstruction, as 

illustrated in Fig. 1(b).  Using manually segmented lung 

lobes, our recent study revealed that 3D visualization 
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of lung cavities can significantly reduce surgeons’ workload 

and planning time for surgical planning, as well as increase 

the accuracy of predicted lobectomy [3].   However, a 

challenge for this 3D visualization is the segmentation of lung 

lobes by identifying lobar fissures in 2D CT images. 

To precisely localize lobar fissures, many research groups 

have used a two-stage approach: (1) find regions containing a 

fissure (i.e., fissure regions) in 2D CT images; and (2) refine 

the location and curvature of the fissure within the regions 

[4-7]. The precision of identifying fissure regions largely 

contributes to the final accuracy of segmenting the lung lobes.   

This identification is difficult due to the fissure’s variable 

shape and appearance, along with the low contrast and high 

noise associated with both clinical and isotropic (~ 0.6 mm in 

thickness) CT images [8]. Often, this identification is 

complicated by various pathologies in the patients’ lungs.   

Nevertheless, there have been some efforts of identifying 

fissure regions. Wang et al. [4] developed an algorithm using 

manually segmented fissures to aid this identification.  Zhang 

et al. [5] created an algorithm based upon a pulmonary atlas.  

However, this algorithm failed for some testing CT images of 

patients.  Zhou et al. [6] and Ukil et al. [7] used the bronchial 

and vascular trees of the lung cavities to detect the fissure 

regions, respectively.  Nevertheless, segmentation of these 

trees is time consuming and difficult to achieve [9].   Our 

preliminary work developed two algorithms for segmenting 

the lung lobes using a technique of adaptive fissure sweep to 

identify fissure regions [10, 11].  This technique worked well 

for the patients’ lungs following a general lung anatomy, 

butfailed for lungs with abnormal anatomy or with severe 

pathologies. Thus, accurate identification of fissure regions 

remains an obstacle for precise segmentation of lung lobes. 

In a CT image of cancerous lungs, there are four typical 

regions: fissure, air, bronchial and tumor. As shown in Fig. 2, 

a distinct texture characterizes each of these regions. These 

textures describe the spatial distribution of varying shades of 

gray and are easily identifiable by human eyes. 

Surgeons/radiologists normally rely on the subtle difference 
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Fig. 1.Difference between the 2D view of clinical CT images (a) and 3D 
visualization of lung cavities reconstructed from a stack of 2D CT 

images by manually segmenting lung lobes (b). 
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among these textures to identify fissure regions.  It is 

therefore natural to apply texture analysis for computer-based 

identification of fissure regions.  Even though many research 

groups pursued texture analysis on CT images for 

differentiating lung diseases [12], segmenting abdominal 

organs [13] and thrombotic tissue in the aorta [14], we could 

not find reports on using texture analysis for identifying 

fissure regions.  To fill this vacuum, we conducted a study to 

examine the effectiveness of two common methods of texture 

analysis – the gray level co-occurrence matrix (GLCM) [15] 

and the gray level run length matrix (GLRLM) [16] – for 

identifying fissure regions among other types of regions in the 

human lungs (see Fig. 2).  Because the computation of GLCM 

texture features differs from that of its GLRLM counterparts 

(refer to the Section II), it is difficult to theorize the suitability 

of each texture analysis method for identifying fissure 

regions. For this study, we are interested in achieving the 

highest accuracy of identifying fissure regions.  Our goal is to 

investigate which of these methods is suitable for identifying 

fissure regions in CT images. 

In this paper, we present our study with the following 

organization:  Section II describes the methodology of the 

study.  Section III presents study results, including a brief 

discussion.  Section IV gives the conclusions and future work. 

II. METHODOLOGY 

We used isotropic CT image stacks of the lung cavities 

from 24 anonymous patients at the Foothills Medical Center, 

Calgary, Alberta.  A Siemens Sensation 16 multi-slice CT 

scanner generated these image stacks with the same protocol 

and iodine contrast agent.  Each image in a stack has an image 

resolution of 512 × 512 pixels with a thickness of 0.6 mm.  

For a patient with an average lung size, an image stack 

contains about 220 isotropic CT images.  Of all patients, 22 

had lung tumors.  Using both GLCM and GLRLM methods, 

we classified all four regions within the human lungs as 

illustrated in Fig. 2 for our study.  Fig. 3 gives the flowchart of 

classifying these four regions.    

A. Filtering and Region Selection 

Isotropic CT images are noisy compared to clinical CT 

counterparts [11].  To reduce noise, we applied the same 

Wiener filter as in our previous work [11].  For each CT 

image stack, we manually selected approximately 20 regions 

 
of interest (ROIs) on every 5

th
 slice of the stack, equivalent to 

clinical CT images with a thickness of 3.0 mm (each is 

compressed from 5 isotropic CT images).  This selection 

resulted in roughly 880 ROIs for the isotropic CT image stack 

of a patient with an average lung size.  Each ROI had a size of 

10 × 10 pixels to approximate the width of fissure regions in 

isotropic CT images with a resolution of 512 × 512 pixels.  

For training a neural network, we predefined each ROI as one 

of the 4 regions: fissure, air, bronchial and tumor.  

B. GLCM Texture Features 

A GLCM is a 2D histogram, Pθ,d(i,j), describing how 

frequently two pixels with gray levels i, j occur jointly with an 

offset [x y], where x and y are the horizontal and vertical 

distances between the two jointly occurring pixels.   

For our study, we calculated a set of 32 GLCMs from each 

selected ROI described in Subsection A.  This calculation is 

based upon 2 independent planes of a CT image stack (a 3D 

dataset) and 16 pairs of offset [x y] on each plane.  Given a 

CT image stack in the cross-sectional plane, we rotated the 

entire stack 90
0
 clockwise and then re-sliced the rotated stack 

in the sagittal plane.  This allowed us to analyze each ROI 

from both cross-sectional and sagittal planes.  To identify 

fissure regions, we used 16 offsets ([0 1], [-1 1], [-1 0], [-1 -1], 

[-1 2], [-2 1], [-2 -1], [-1 -2], [-1 3], [-2 3], [-1 -3], [-2 -3], [-3 

1], [-3 2], [-3 -1], [-3 -2]) instead of the original 4 offsets ([0 

1], [-1 1], [-1 0], [-1 -1]) proposed by Haralick et al. [15].  We 

used these 16 offsets to capture a wide range of fissure 

orientations.  For each of the 32 GLCMs, we calculated all 14 

texture features proposed by Haralick et al. [15].  This results 

in a total of 448 texture features for a single ROI.  We used all 

of them for the purpose of achieving the highest accuracy of 

identifying fissure regions.  This number of texture features 

could be later optimized to reduce computation time.  

The computation of each GLCM requires the scaling of 

gray-level pixel intensity within the ROIs into certain 

quantized levels. However, no guidelines exist for selecting 

proper quantized levels [17].  The ideal number of quantized 

levels, Q, is highly dependent on tissue textures.  To find the 

ideal Q for identifying fissure regions, we varied the number 

of quantized levels Q from 8 to 64, in 2
q
 increments (q = 3, 4, 

5, 6).  This range of quantized levels balances between the 

scaling of gray-level pixel intensity and computation time.   

C. GLRLM Texture Features 

Unlike a GLCM which stores the probability of two gray 

 
 

Fig. 3. Flowchart of evaluating the GLCM and GLRLM methods for 

classifying four typical regions in the human lungs. 
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Fig. 2. An isotropic CT image of the human lungs showing the four 

types of regions: fissure, air, bronchial and tumor. 
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levels occurring at a predefined radius and direction, a 

GLRLM is a 2D histogram, Rθ(i,j), recording the number of 

run length primitives with gray level i and  run length j in the 

direction θ [16].   A run length primitive is a maximum set of 

same gray-level pixels connected in a line.   

For identifying fissure regions, we used the same 2 planes 

and 16 offsets for calculating the GLRLMs as we did for 

computing the GLCMs.  This resulted in 32 GLRLMs for a 

single ROI.  On the basis of 11 texture features proposed by 

Galloway [16], we computed a total of 352 texture features 

for each ROI.  We used all of these features for obtaining the 

highest accuracy of identifying fissure regions.  Same as with 

the GLCMs, we varied the number of quantized levels Q from 

8 to 64, in 2
q
 increments (q = 3, 4, 5, 6). 

D. Neural Network 

To evaluate the performance of both GLCM and GLRLM 

texture features for identifying fissure regions, we applied a 

neural network (NN) to classify the ROIs selected in the 

Subsection A.  For simplicity and flexibility, we used a 3 

layer feed-forward back-propagation NN [18].  We utilized 

supervised training for this NN to learn the patterns 

associated with various inputs by fitting a parametric model 

over them.  Once trained, the NN can then classify unknown 

patterns based on what it has learned. 

For this NN, we used a linear function for the output layer 

and a Log-Sigmoid transfer function for both input and 

hidden layers [18].  The output layer contains 4 neurons, 

corresponding respectively to four types of regions in the 

human lungs (see Fig. 2).  The selection of the ideal number 

of neurons for the input and hidden layers (input/hidden 

layers) is a non-trivial task and often based on trial-and-error.  

We investigated the effects of neuron numbers in the 

input/hidden layers (both have the same number of neurons) 

on classifying the ROIs.  The number of neurons N varied 

from 4 to 128 in 2
n
 increments (n = 2, 3, 4, 5, 6, 7).  For the 

classification, we applied the following procedure: 

1. Compute the GLCM and GLRLM texture features for 

all ROIs in the CT image stacks of 24 patients. 

2. Select randomly 5 of 24 image stakes as training data. 

3. Train the NN using either the GLCM or GLRLM 

texture features from the training data in Step 2.  The 

predefined ROIs described in Subsection A serve as 

the targets for this supervised training. 

4. Classify all ROIs from the remaining 19 image stacks.  

5. Repeat 10 times from Step 2 to Step 4 to average out 

the randomness of initializing the NN’s weights and 

selecting training data. 

To find the optimal quantized level Q and the number of 

neurons N, we repeated the above procedure for Q from 8 to 

64, in 2
q
 increments (q = 3, 4, 5, 6) and for N from 4 to 128, in 

2
n
 increments (n =2, 3, 4, 5, 6, 7). 

III. RESULTS AND DISCUSSIONS 

Using a 3.2 GHz Xeon Duo computer with 2 GB RAM 

running Matlab 7.0.4 (R14),   we performed classification of  

the four regions in the human lungs: fissure, air, bronchial, 

and tumor regions for all 24 isotropic CT image stacks (about 

880 ROIs/stack).  We compared the resulting classification 

from the NN to our predefined targets.  We utilized true 

positive (TP), true negative (TN), false positive (FP) and false 

negative (FN) to measure the performance of the 

classification.  We also calculated the sensitivity, specificity, 

and accuracy of the classification by: 
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=
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Fig. 4 illustrates examples of classifying an isotropic CT 

image without tumor using the GLCM texture features (the 

GLCM method) and its GLRLM counterparts (the GLRLM 

method).  Both methods produced very distinguishable 

fissure regions, as highlighted by white arrows. This reveals 

that both methods of texture analysis are able to identify 

fissure regions. In addition, both methods yielded similar 

results in classifying air and bronchial regions. 

Fig. 5 shows a surface plot of the average accuracy for 

classifying the four types of regions in the human lungs using 

the GLCM method.  For this plot, we used the quantized 

levels, Q = 8, 16, 32, 64, and the number of neurons in the 

input/hidden layers, N = 4, 8, 16, 32, 64, 128.  As shown in 

Fig. 5, the average accuracy of the classification decreases 

dramatically for Q > 16.  In contrast, the accuracy remains 

fairly stable no matter the number of neurons in the 

input/hidden layers.  The highest overall accuracy of 90% 

occurred with Q = 16 and N = 64. 

Fig. 6 illustrates a surface plot of the average accuracy for 

the classification using the GLRLM method with the same 

quantized levels and number of neurons as in Fig 5.  Unlike 

the accuracy of the GLCM method, the accuracy of the 

GLRLM method is fairly constant for different quantized 

levels.  However, the accuracy of the GLRLM method is 

highly dependent on the number of neurons in the 

input/hidden layers.  As shown in Fig. 6, the highest overall 

accuracy of the GLRLM method reached 91% with Q = 16 

and N = 32.  The GLRLM method attained an overall 

accuracy of 90% with Q = 16 and N = 64. 

 
 

Fig. 4. Examples of classification: (a) original CT image; (b) classified 

image using the GLCM method; and (c) classified image using the 

GLRLM method.  The pixels in black, dark gray and light gray represent 
classified fissure, air and bronchial regions, respectively.  White arrows 

indicate fissures and identified fissure regions. [These examples are 

fissure regions cropped from the CT images due to limited space here]. 
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Using both GLCM and GLRLM methods with Q = 16 and 

N = 64, Table I shows the sensitivity, specificity and 

individual accuracy of classifying the 4 types of regions in the 

lungs. The sensitivities of the GLCM method were notably 

lower than those of the GLRLM method for air and tumor 

regions.  Both methods yielded comparable sensitivities for 

the rest of regions. Both methods achieved similar 

specificities for all types of regions, although the GLCM 

method gave slightly lower accuracy than the GLRLM 

method.  For fissure regions in particular, both methods had 

an accuracy of 86% and 87%, respectively. This compares 

favorably with the accuracy of 80% for surgeons/radiologists 

identifying fissure regions in clinical CT image stacks [10].  

Without optimization, average computation time for the 

GLCM texture features is about 25% longer than that for the 

GLRLM counterparts, as shown in Table I. Considering both 

classification accuracy and computation time, the GLRLM 

method is better suited for identifying fissure regions. 
 

 

IV. CONCLUSION AND FUTURE WORK 

We studied the effectiveness of using the GLCM and 

GLRLM methods for identifying fissure regions by 

classifying the four types of regions in the human lungs.  We 

obtained the best accuracy for identifying all these regions 

using a feed-forward back-propagation NN, with 16 

quantized levels and 64 neurons.  Although both methods 

yielded similar accuracies, the GLRLM method required less 

computation time.  This makes the GLRLM method a better 

candidate for identifying fissure regions.  Future work 

includes reducing the number of texture features, optimizing 

the computation of the GLRLM method and combining it 

with our wavelet algorithm [11] to detect fissures for 

segmenting lung lobes. 
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TABLE I 
CLASSIFICATION OF FISSURE, AIR, BRONCHIAL AND TUMOR REGIONS 

  

Regions 
 

Avg. 

Time 

(s) Fissure Air Bronchial Tumor 

 

GLCM 
(%) 

Sensitivity 82 77 91 64  

105 Specificity 90 92 92 98 

Accuracy 88 88 92 92 

 

GLRLM 
(%) 

Sensitivity 79 80 92 68  

75 Specificity 91 91 93 98 

Accuracy 87 88 93 93 

 

 
Fig. 6. Surface plot of the average classification accuracy for the four 

types of regions in the human lungs using the GLRLM method.  
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Fig. 5. Surface plot of the average classification accuracy for the four 

types of regions in the human lungs using the GLCM method. 
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