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Abstract— Four-dimensional computed tomography(4D CT)
is significant in radiotherapy treatment planning for thorax and
upper abdomen to take their motion induced by respiration
into consideration, but its high radiation dose becomes a major
concern and impedes its wide application. To solve the problem,
we propose an image interpolation approach to get 4D CT
simulation images. We simulate 4D CT images at arbitrary
intermediate phases by B-Spline deformable model with cosine
interpolation of the deformation field, which is obtained by
deformable registration of two CT images at end-exhale and
end-inhale phases. The mean of absolute differences computed
between actual 4D CT images and simulation ones is used to
evaluate the accuracy of simulation. Our experiment results
show that both linear interpolation and cosine interpolation
with proper parameters perform well and the latter performs
a little better than the former in general.

I. INTRODUCTION

Respiratory motion induces significant movements of tho-

racic and abdominal tumors which pose a great challenge

in thorax and abdomen radiotherapy planning and delivery,

leading to image artifacts [1] and distorted target volume [2],

making target site under-irradiated and healthy tissues unnec-

essarily irradiated. Breath-hold and respiratory gating have

mainly been employed to handle the tumor motion, in which

the radiotherapy accuracy is at the cost of making patients

uncomfortable or lengthening treatment time [3].

Four-dimensional computer tomography(4D CT) have

been proposed to acquire a set of CT images at different

respiratory phases by sorting free-breathing multi-slice CT

scans and reconstructing them into phase-binned images [4].

Although 4D CT has been reported to successfully account

for respiratory motion in images [5], its high radiation dose

to patients becomes a major concern and impedes its wide

clinical application. In axial cine mode, data acquisition

is implemented at least in one respiratory cycle for every

couch position and about 10 20 sets of phase-resolved 3D

CT images are acquired, which means a huge increase of

radiation dose. Therefore effective dose reduction is highly

desirable for clinical application of 4DCT.

A novel method has been reported to perform 4D scan

at a lower current to reduce the patient radiation dose [6],

in which a sophisticated smoothing algorithm is needed
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to deal with the increased statistical noise caused by the

low current. Another method reported is to simulate 4DCT

images with two regular CT images at end-exhale and end-

inhale phases [7], [8]. Deformable registration is used to

study the correlation between these two phases and obtain

the deformation field. 4D CT images at intermediate phases

are deduced by a deformable model with linear interpolation

of the deformation field. This method not only greatly

reduces the radiation dose required for 4D CT, but also

avoid the artifacts of actual 4D CT images if the correla-

tion between external respiratory signal and scanner is not

accurate. Besides, this method breaks up the limitation of

time resolution of actual 4D CT permits and permits us to

obtain images at arbitrary phases. The majority of studies on

this method mainly focused on image registration, and they

didn’t pay much attention to another important part of 4D

CT images simulation: image interpolation, that is, to deduce

simulation images with deformable model and interpolation

of deformation field. Linear interpolation, which is based

on the supposition that lung motion is linear and uniform,

was usually used to get intermediate deformation field for

warping image with deformable model.

In our paper, we take the change of lung motion speed

into consideration and use cosine interpolation to interpolate

the deformation field between CT images at end-exhale and

end-inhale phases by a modified cosine signal representing

respiratory motion to estimate deformation fields for inter-

mediate phases. Then a B-Spline deformable model is used

to deduce 4D CT simulation images at intermediate phases

with these deformation fields. The performance of simulation

is evaluated by the mean of absolute differences between

actual images and simulation ones. The results of cosine

interpolation are compared with that of linear interpolation

to see whether it performs better or not.

II. METHODS AND MATERIALS

A. Image Acquisition

Only two regular 3D CT images at end-exhale and end-

inhale phases are needed to get simulation images of 4D CT.

However, here, in order to better evaluate the performance

of 4D CT simulation, three 4D CT lung cases were acquired

by Philips Brilliance CT BigBore scanner with 5mm slice

thickness. The number of slice images in these cases were 43,

49 and 52 respectively and these images were all 512×512 in

size and in DICOM image format. Eight respiratory phase

bins were set for the 4D study which were indexed from

CT0 to CT70, with CT0 corresponding to the starting phase

of inspiration and CT30 the full inspiration phase. CT0 to
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CT30 represent inspiration while CT40 to CT70 represent

expiration.

Here, we regard the two image sets of CT0 and CT30

as the regular 3D CT images at end-exhale and end-inhale

phases. The actual CT10, CT20 images are used to make a

comparison with simulation images of corresponding phases

to evaluate the performance of our approach.

B. Image Preprocessing

The registration algorithm used in our study is voxel-based

and vulnerable to image noise. Therefore, anisotropic diffu-

sion is used in image preprocessing for denoising, by which

noise is reduced and texture is preserved and enhanced.

The motivation for anisotropic diffusion is that a Gaussian

smoothed image is a single time slice of the solution to

the heat equation, that has the original image as its initial

conditions. It includes a variable conductance to limit the

smoothing at edges and a time parameter which represents

the effective width of the filter when using Gaussian kernels.

More information about anisotropic diffusion can be found

in [9].

Besides, the deformable registration used in the next step

is based on the assumption that for every point, its intensity

is conserved from the fixed image to the floating one but

at a different location. However, this intensity conservation

assumption is invalid inside the lung where the changing

quantity of inspired air leads to change of voxel intensity.

Therefore, lung intensity is artificially modified to make sure

the intensity conservation between two sets of registration

images. Here, region growing algorithm [10] is used to

segment the lung out and calculate the mean lung intensity.

Let I1 and I2 be the two images to be registered, ρ1 and ρ2

denote the mean of lung intensity of the two images. We

artificially modify the intensity value I1(x) of point x which

is inside of lung by I′1(x) = I1(x)+ρ2 −ρ1.

C. Image Deformable Registration

Here image deformable registration is to register the two

CT images CT0 and CT30 to get their deformation field for

image interpolation in the next step. In our study, B-Spline

deformable model [11] is used in image non-grid registration

because of its simplicity. The model only uses a lattice of

nodes overlaid on the image, and deformation at any other

location in the image is deduced by spline interpolation of

deformation coefficients of close nodes. Therefore, the B-

Spline model is locally controlled, that is, the displacement

of a point can only be influenced by its close nodes. Here,

CT0 was set to be fixed image Ia and CT30 floating image

Ib. The image is divided into a grid with N3 nodes.

In our study, we use a lattice of 18 nodes for each

dimension in image registration with a B-Spline deformable

model. Because each node has three variables representing

the displacements in three different directions, therefore there

are 6591 variables that need optimizing to find the minimum

of the registration metric. Here, limited memory Broyden,

Fletcher, Goldfarb and Shannon algorithm (LBFGS), which

is good at dealing with high-dimensional optimization prob-

lems, is adopted to minimize registration metric [12]. Here,

we use normalized cross correlation (NCC) between two

images as the registration metric. The calculation of NCC

is as follows:

NCC =
∑N3

i=1(Ia(xi)− Ia0)(Ib(T xi))− Ib0)
√

∑N3

i=1(Ia(xi)− Ia0)2 ∑N3

j=1(Ib(T x j)− Ib0)2

(1)

Ia0 =
1

N3

N3

∑
i=1

Ia(xi) (2)

Ib0 =
1

N3

N3

∑
i=1

Ib(T xi) (3)

where i and j are the node indices of fixed image, Ia(xi) is

the intensity of node xi on the fixed image Ia, and Ib(T xi) is

the intensity of mapped position of node xi on floating image

Ib.

D. Image Interpolation

Image interpolation is to deduce simulated intermediate

CT images between CT0 and CT30 by warping CT30 using

a B-Spline deformable model with intermediate deformation

fields which are estimated by interpolation of the deformation

field obtained in the last step. The deformation field derived

from image registration between CT0 and CT30 denotes the

displacements of each voxel in the fixed image. We suppose

that each point moves along its displacement vector by a

straight line. The intermediate displacement can be derived

by interpolation of the whole displacement vector. Let u be

the deformation field that warps image CT30 to CT0, we

can obtain the intermediate deformation field by us = su,s ∈
[0,1].

Although the straight line trajectory is a well approxima-

tion of motion between end-exhale and end-inhale for the

majority of lung points [13], the lower-middle regions of

the lungs present larger motion nonlinearity and hysteresis,

which should not be neglected in the future.

Here, we use and compare two deformation field in-

terpolation methods: linear interpolation (LI) and cosine

interpolation (CI). LI supposes the moving speed of each

point to be constant. However, this assumption is invalid

in lung motion induced by respiratory motion. Rather than

constant speed model, a modified cosine model developed

by Lujan [14] is preferred to be used to describe the organ

respiratory motion. The model is given by

x(t) = x0 +Acos2n(πt/τ +φ) (4)

where x0 is the position of point at the end of exhale, A

is the movement amplitude, τ is the cycle of breathing and

φ is the starting phase. The factor n alters the shape of the

breathing curve, the bigger n denotes the longer time spent

in exhale phase compared to the time spent in inhale. In our

study, we use this modified cosine curve as the interpolation
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curve to obtain the intermediate displacement for every point

in the floating image. Thus s = cos2n(πt/τ +φ), where τ is

twice of the period between CT0 and CT30, t = 0 denotes

the end of exhale phase CT0, thus φ is set to be π/2, n is

set to be 1 and 2 respectively in CI1 and CI2.

III. RESULTS AND DISCUSSION

In the first step of image registration, the initial values of

the registration metric of these three cases are about −0.98.

The convergence tolerance is set to be 10−6 and convergence

is achieved in less than 100 iterations. The final absolute

values of the registration metric are about 0.998. The result

of image registration of case1 in sagittal, coronal, axial

views respectively are illustrated in Fig.1. The comparison

of difference images before and after registration in the last

two rows proves that BSpline method can effectively model

the lung respiratory motion. The residue differences between

CT0 and warped CT30 are mainly due to the different

intensity of blood vessel because of different filling extent.

Fig. 1. The result of image deformation registration of case1: the first row
shows images of CT0; the second row and third row show images of CT30
before and after deformable registration respectively; the fourth and fifth
row show difference image of CT0 and CT30 before and after registration
respectively; the three columns show the images in sagittal, coronal, axial
views respectively.

Two deformation field interpolation algorithms (linear

interpolation and cosine interpolation) are adopted and com-

pared in our study. The actual images and simulation ones of

CT20 of case1 in sagittal, coronal, axial views are shown in

Fig.2. All these difference images are almost totally black,

which illustrates that LI, CI1 and CI2 all perform well

enough to get simulation 4D CT images. From the local

amplified difference images shown in the last row, we can

see that CI1 performs a litter better than LI, and CI2 performs

worst.

In order to better evaluate and compare the performance of

these interpolation methods, the mean of absolute differences

Fig. 2. The result of image interpolation of case1: the first row shows the
actual CT20 images; the second, fourth, sixth rows show the simulation ones
acquired by LI, CI1, CI2 respectively; the third, fifth, seventh rows show the
difference image between actual and simulation images with LI, CI1, CI2
respectively; the last row shows the amplified region in green rectangle on
the difference images in coronal view with LI, CI1, CI2 respectively from
left to right.

(MAD) between the actual CT images and the interpolated

images is calculated, which is illustrated in Fig.3. We can

see from the first two subfigures that for all the three cases,

LI performs a little better than CI1 in simulating CT10

images, which is converse in simulating CT20 images, and

CI2 performs worst in both CT10 and CT20 simulations for

all cases. The last subfigure illustrates that CI1 performs a

little better than LI in general and CI2 is the worst. It is also

observed that MADs of CT20 are much smaller than that of

CT10.

We think that the differences between the actual CT

images and interpolated simulation images are caused and

influenced by three factors. One is the accuracy of image

registration between images at end-exhale and end-inhale

phases. The second is the different intensity of blood vessel

between CT30 phases and the intermediate phases in that the

simulation images are acquired by warping CT30 images

with interpolated deformable field, therefore the difference

could not be reduced by image registration or interpolation.

The last is the difference between the real motion and the
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Fig. 3. MAD values of all three cases on CT10 and CT20 with LI, CI1
and CI2

motion model on which the interpolation algorithms are

based, that is, how the speed changes according to the

interpolation model and whether nonlinearity and hysteresis

of lung motion can be ignored in a specific case. Since the

interpolation algorithms use the same deformation field to

get intermediate deformation field to warp image for 4D

CT simulation images, the different MADs in Fig.3 reflect

how the interpolation models represent the real lung motion.

Therefore the results we get from Fig.3 can be explained

that lung motion at the intermediate phases near to the

start of inspiration (CT0) is better approximated by linear

constant-speed model than cosine model, while lung motion

at the intermediate phases near to the full inspiration(CT30)

is better represent by cosine model of n = 1 with a lower

speed. The result that MADs of CT20 are smaller than that

of CT10 can be explained by two reasons. First, the smaller

time interval between CT20 and CT30 results in smaller

intensity difference of blood vessel between them; Second,

the smaller time interval also results in smaller errors due to

motion nonlinearity neglected in our approach.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, we get 4DCT simulation images by B-Spline

deformable model and cosine interpolation of deformation

field derived by image registration between CT images at

end-exhale and end-inhale phases. Because the registration

in our study is based on image intensity, images are pre-

processed by denoising with anisotropic diffusion algorithm

and modifying lung intensity artificially with image seg-

mentation to ensure the accuracy of image registration. B-

Spline deformation registration is employed and proved to

be well in modeling the lung motion between end-exhale

and end-inhale phases. Cosine interpolation, which is based

on the straight-line trajectory assumption and the respiratory

motion model proposed by Lujan, is used in our study to

get intermediate deformation fields with which CT30 image

is warped to obtain intermediate images. The results of our

experiments show that both linear interpolation and cosine

interpolation with proper parameters are well enough in

simulating 4DCT images and the latter performs a bit better

in general, and linear interpolation is a little better in CT10

simulation and cosine interpolation with n = 1 a little better

in CT20, which proves that the straight-line assumption is

a well approximation of lung motion and the speed at the

phases near to the start of inspiration is more likely to be

constant and the speed slows down at the phases near to full

inspiration like the cosine model.

B. Future Works

Although the assumption that lung motion is a straight-

line trajectory can well approximate the real motion for the

majority of lung points, the real motion is nonlinear and

subject to hysteresis, which is specific to different cases and

different parts of lung. In future work, we expect to take the

nonlinearity and hysteresis of lung motion especially that of

the lower-middle part of lungs into consideration and propose

a proper non-straight-line deformation field interpolation

algorithm in order to further reduce the difference between

the actual images and simulation images.
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