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Abstract—The purpose of this study is to recognize the psoas 

major muscle on X-ray CT images. For this purpose, we propose a 

novel recognition method. The recognition process in this method 

involves three steps: the generation of a shape model for the psoas 

major muscle, recognition of anatomical points such as the origin 

and insertion, and the recognition of the psoas major muscles by the 

use of the shape model. We generated the shape model using 20 CT 

cases and tested the model for recognition in 20 other CT cases. The 

average Jaccard similarity coefficient (JSC) and reproducibility rate 

were 0.704 and 0.783, respectively. Experimental results indicate 

that our method was effective for a 2-D cross-sectional area (CSA) 

analysis. 

I. INTRODUCTION 

N aging societies, it is very important to analyze 

age-related hypokinesia. In Japan, elderly people being 

physically handicapped after suffering a fall is becoming a 

social issue. Sixty-two percent of the falls result in physical 

damage, of which 12% result in bone fractures and 8% result 

in the victims ―requiring constant help and care‖ [1]. 

Therefore, maintaining the quality of life (QOL) of the 

elderly is a critical task in the field of healthcare for the aged 

[2]. In addition, the abovementioned statistics correspond to 

events that occur inside the house; elderly people fall during 

routine everyday movements. Thus, proactive measures are 

required to protect the elderly. Factors affecting the falls 

suffered by elderly people include sensory lineage, the state 

of the ocular system, skeletal musculature, balancing 

mechanisms, higher nervous activity, heavy medication, and 

changes in sleep patterns. Here, we focus on skeletal 

musculature, which decreases with age.  

 It is considered that elderly people fall because of 

weakness in the muscles at the lower extremities. Atrophy of 

the psoas major muscles affects the ability of elderly people 

to walk and exercise [3]. In addition, it is difficult for female 
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patients to maintain the condition of these muscles, which is 

measured in terms of the cross-sectional area (CSA), solely 

by daily exercise; furthermore, the CSA decreases more 

rapidly with age. Therefore, because the decrease in the CSA 

of the psoas major muscles is higher for septuagenarians and 

the elderly than for any other age group, it is necessary to 

protect the psoas major muscles from age-related damage [3].  

 We developed a computer-aided diagnosis (CAD) system 

for diagnosing the torso region using non-contrast CT images 

in which the skeletal muscles are in focus [4, 5]. Our aim is to 

measure the skeletal muscles automatically. Currently, a 

CAD system is required for clinical situations. Recently, we 

have been able to rapidly obtain high-definition CT images; 

however, the number of images increases to as many as a 

thousand slices per patient, causing radiologists to neglect the 

areas in the displayed images that are of no interest when 

targeting specific diseases. Therefore, we have developed the 

CAD system as an aid for radiologists.  

In this paper, we propose a novel method to automatically 

recognize the psoas major muscles in non-contrast X-ray CT 

images of the torso. The key steps that this method is based on 

are the generation of a shape model for the psoas major 

muscles and the application of a recognition process. In this 

process, we automatically obtain pathognomonical points as 

landmarks (LM) on the basis of anatomical positional 

information on the region between the muscle and skeleton. 

Then, we use the proposed method of creating an anatomical 

centerline for the muscle in order to describe the muscle fiber 

directions. Next, we extract the regions that show the muscles. 

At this point, the psoas major muscles are deep muscles, and 

hence, we utilize the anatomical centerline to create the shape 

model. Then, we recognize the muscles using density 

information for the regions generated by the use of the model. 

Finally, we estimate the CSA and compare the manually 

obtained results with those obtained using this method. The 

results indicate the effectiveness of applying the principles 

behind this method. 
II. METHODS 

 The psoas major muscles cover the anterolateral surface of 

the bodies of the lumbar vertebrae and fill the space between 

the vertebral bodies and transverse processes. Each of these 

muscles originates from the bodies of vertebra XII and other 

four lumbar vertebras. These muscles pass inferiorly along 

the pelvic brim and attach to the lesser trochanter of the 

femur; the point of attachment is the insertion [6]. We treat 

the origin and insertion as LMs. Then, the corresponding LMs 

are connected by a straight line called the anatomical 

centerline, which represents the direction of the muscle fiber. 

We create five anatomical centerlines between the 

corresponding LMs. Further, the muscle is found to be the 

thickest in the center, and it connects the origin and insertion. 
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We approximate its shape by using the quadratic function 

included in the shape model of the psoas major muscles. In 

the recognition process, we automatically recognize LMs to 

create the anatomical centerline and utilize the shape model 

for the psoas major muscles. 

  

A. Shape Model Generation 

The first author manually extracted the regions showing the 

psoas major muscle, and the results were inspected and 

revised by the third author, who is an expert on anatomy. In 

this study, we used 20 CT cases in which no lesions or 

atrophying occurred within the target region. Next, we 

manually input pathognomonic points. Table I shows the 

origin and insertion of the psoas major muscles. In this table, 

the insertion was anatomically defined by the lesser 

trochanter of the femur; however, this model was generated 

by using the barycenter of the lacuna musculorum instead 

because the CT image of the torso does not always include the 

lesser trochanter of the femur. In addition, in this method, the 

origin and insertion were used for determining an anatomical 

centerline so that they were aligned. Next, the Euclidian 

distance technique was applied to this manually extracted 

region to obtain a distance value from the anatomical 

centerlines (Fig. 1). This value represents the distance 

between the centerline and the border of the psoas major 

muscles.  

In this method, this distance value was normalized by the 

distance from the midpoint, which was measured from the 

midpoint of the anatomical centerline. These normalized 

values were included in the database used in the study. Then, 

we approximated the quadratic curve by using the value for 

each anatomical centerline. Figure 2 shows the obtained 

patterns. We approximated the quadratic curve
 

iiii xy   2 . In this function, i is the gradient represented 

by the shape of the outer psoas major muscles; i  is the 

maximum value of the function and indicates the intercept of 

the function since it yields the approximate value of the 

greatest dimension of this muscle (i.e., the maximum value of 

the function is attained at the midpoint between the origin and 

insertion); ix
 
is used in the recognition process to 

calculate iy by substitution. 

Table II lists the outer shape model generated by a quadratic 

curve approximation. The i for each origin was determined 

as
41081.1  , 

41029.4  , 
41068.5  , 

41001.8  , 

and
41020.9  , respectively. i is determined in the 

subsequent recognition process rather than in this process. 

This table indicates that the average 2R  value is 787.0 ， the 

maximum value is 902.0 , and the minimum value is 660.0 . In 

particular, we obtained a relatively low 2R  value for L4.  

 

B. Anatomical Feature Point Recognition 

 Before the recognition process, we must automatically 

recognize the pathognomonical points as LMs. In this section, 

we explain the automatic LM recognition method. Each LM 

is detected automatically on the basis of the anatomical origin 

and insertion. The location of the LM on the segmented 

skeletal image [4] was determined by its spatial anatomical 

position information. Table I lists the anatomical origins and 

insertions that are used in this method as LMs in the same 

manner as in the manual extraction process discussed in 

section A.  

 To determine the location of each origin, we use positional 

information for each skeleton from Th12 to L4. First, we 

determine the z coordinate of the body axis by determining 

the barycenter of each skeleton (Fig. 3(a)). Next, we 

determine the x and y coordinates. This is a bilaterally 

symmetric process. Then, the median point on the axial plane 
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Origin Insertion 

Thoracic vertebra XII 

Barycenter of 

lacuna 

musculorum 

Lumbar vertebra I 

Lumbar vertebra II 

Lumbar vertebra III 

Lumbar vertebra IV 

 
 

      (a)          (b) 
Fig. 1. Diagrams for shape model generation. (a) Patterns showing five 
anatomical centerlines on the psoas major muscles identified manually. 

(b) Image showing Euclidian distance from centerline to the border. 

 

 
 

Fig. 2. Diagram for the shape model (solid line). The outer shape of the 

psoas major muscle is approximated using a quadratic curve.  

 

TABLE II 

SHAPE MODEL FUNCTION 
 

Origin Approximate functions R
2
 value 

Thoracic vertebra XII y1 = – 1.81×10
-4

x1
2
+ β1 0.753 

Lumbar vertebra I y2 = – 4.29×10
-4

x2
2
+ β2 0.902 

Lumbar vertebra II y3 = – 5.68×10
-4

x3
2
+ β3 0.855 

Lumbar vertebra III y4 = –8.01×10
-4

x4
2
 + β4 0.765 

Lumbar vertebra IV y5 = –9.20×10
-4

x5
2
 + β5 0.660 

 

Origin 

Midpoint :
 
  

Insertion 

3558



  

within the region including the human body region was 

calculated; the symmetry line is shown by the dashed line in 

Fig. 3(b). Therefore, on the basis of the area enclosed by the 

solid line in Fig. 3(b), we recognize the white circle 

automatically.  

 In determining the insertion, we use the barycenter of 

lacuna musculorum, as indicated above. The lacuna 

musculorum was automatically recognized by using our 

previous method [7]. In this study, we calculate the 

barycenter of this area to be an insertion LM.  

 Finally, we use these LMs to generate an anatomical 

centerline. In this study, we connect each origin and insertion 

by a straight line. Figure 4 shows a 3-D image of a skeleton 

with an anatomical centerline. Each generated line is 

symmetric with respect to the vertebral column. 

 

C. Recognition Process 

 We utilize this shape model to recognize the psoas major 

muscles in unknown test cases. As a preliminary step, we 

recognize anatomical points and generate an anatomical 

centerline. 

 First, we complete the development of the shape model and 

determine i  for each anatomical centerline. Here, the 

distance from the midpoint to the origin or insertion was 

substituted for ix , and then the muscle diameter, which is 

zero at this point, was substituted for iy . After this calculation, 

we use this function to recognize the psoas major muscles. 

Then, we search the muscle region within the created sphere 

to substitute the distance of the midpoint to centerline for ix . 

Figure 5 shows the mask image. After this process, we create 

a short list of regions that possibly show skeletal muscles by 

using the Otsu method [8] in order to set an initial region (Fig. 

6(a)). In addition, there are cases in which the model function 

recognizes an area smaller than the real region. In these CT 

cases, we recognize the surrounding region by using a radial 

pattern up to the boundary. However, if the boundary was not 

detected and the radius was larger than it at the midpoint of 

the centerline, the implementation of this dilation method is 

halted as the boundary would connect to other tissues. Figure 

6(b) shows the recognition results after the extraction method 

has been implemented. 

III. RESULTS AND DISCUSSION 

 We adopted this scheme in 20 CT cases with non-contrast 

torso X-ray CT images and evaluated the accuracy of the 

recognition results; the evaluation was based on the overlap 

rate between the recognized and manually extracted regions 

that were created by an author under the guidance of the 

anatomical specialist. The Jaccard similarity coefficient 

(JSC) [9] and reproducibility rates were used to evaluate the 

effectiveness of the proposed methods. The former is 

calculated by
BA

BA




 and the latter by

A

BA
. A and B 

represent the regions corresponding to the gold standard and 

recognition results, respectively. The JSC rates are calculated 

in the 3-D volume as well as the CSA for each of the vertebral 

bodies. 

 
 
Fig. 5. Mask image generated by shape model function. Each color 
represents the mask of each anatomical centerline. 

 

 

  
(a)                                          (b) 

 
Fig. 6. Recognition results superimposed over the original CT image. 
The green region represents the recognition results obtained using the 

proposed method. (a) Initial results; (b) results obtained using the 

extraction method after initial recognition. 

 
     (a)             (b) 

 
Fig. 3. Diagram showing anatomical feature point recognition. (a) Slice 

decision (dotted line) using position information for the upper and 

lower skeleton. (b) Anatomical feature point recognition; the dashed 
line shows the line of symmetry, the solid line shows the area that was 

searched, and white circle shows a recognized point. 

 

 
 

Fig. 4. 3-D image of a skeleton with anatomical centerlines. Each color 

represents a different anatomical centerline.  
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 Table III lists the values of the recognition results. The 

average value is approximately 0.7–0.8%. This figure is not 

sufficiently high for measuring the muscle volume. Figure 7 

shows the JSC rate of the CSA in each vertebral body. In this 

figure, the high JSC rate is observed at the cross-sections of 

L1 to L4. Figure 8 shows the recognition results. Figure 8(a) 

shows the 3-D view; the green region is the area of overlap 

between the gold standard and recognition results, the blue 

area is the area of overextraction, and the red area is the area 

of underextraction. Figures 7 and 8(a) indicate that our 

method needs improvement for the upper region. However, 

the JSC rates for the middle and lower regions were high. The 

JSC rate at the cross-section of L3 is lower than that at the 

cross-sections of L2 and L4 because of false recognition of 

the vessel; this case is shown by the blue region in Figure 8(a). 

In clinical practice, a radiologist measures the CSA or 

thickness at the cross-section called the Jacoby line. This line 

is located approximately at the cross-sections of L4 to L5, and 

one example is shown in Figure 8(b). In the 20 tested CT 

cases, the mean error in the thickness at the Jacoby line is 3 

mm. This result shows that our method can be used to 

automatically and quantitatively measure the thickness of 

psoas major muscles. Figure 9 shows the Bland & Altman 

plot for the manually extracted regions and the regions 

obtained by using our proposed method. This result confirms 

that the two methods may be used interchangeably, because 

all the differences lie within the mean  1.96 SD.  

IV. CONCLUSION 

 We proposed a fully automated method to recognize psoas 

major muscles in X-ray CT images of the torso. This method 

was utilized in 40 CT cases. The average values for the JSC 

and reproducibility rates were 0.704 and 0.783, respectively. 

These results agree with the 2-D results obtained in clinical 

practice. We confirmed that our results comfortably satisfy 

the requirements for 2-D analysis in terms of the CSA and 

muscle thickness at the anatomical cross-section. 
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TABLE III 

RECOGNITION RESULTS 

 

 JSC rate Reproducibility rate 

Min. 0.641 0.677 

Max. 0.894 0.984 

Ave. 0.704 0.783 

 

 
 

Fig. 7. Average JSC rate of the CSA in each vertebral body for 20 cases. 

 

    
     (a)                (b) 
 

Fig. 8. Recognition results with gold standard. (a) 3-D view of the 

recognition results. (b) Example of the recognition results for the CSA. 
Green represents the area of overlap, blue represents the area of 

overextraction, and red represents the area of underextraction. 

 

 
Fig. 9. Bland & Altman plot showing a scatter diagram of the differences 

plotted against the averages of the two measurements. 
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