
  

  

Abstract—Accurate lung field segmentation is crucial to 

computer-aided diagnosis (CAD) of lung diseases such as lung 

cancer and tuberculosis (TB). In this paper, we propose a 

modified gradient vector flow based active shape model 

(GVF-ASM) for lung field extraction from chest radiographs. 

Experimental results show that the proposed technique provides 

around 3-5% improvement over the ASM techniques. 

I. I-TRODUCTIO- 

LTHOUGH thoracic imaging research has been moving 

towards new techniques such as CT or MRI over the past 

decade, conventional chest radiograph (CXR) is still the most 

common type of radiological procedure, making up at least 

one third of all exams in a typical radiology department [1]. 

Lung field segmentation plays an important role in 

quantification of tissue volumes, lung disease diagnosis, 

localization of pathology, study of anatomical structure and so 

on. However, extracting an accurate lung field from a chest 

radiograph is extremely challenging due to the high variability 

of lung shapes and the variation in image quality.  

 Previous efforts made for lung field segmentation can be 

broadly categorized into two main groups: low level and high 

level methods. Low level processing refers to pixel and/or 

region intensity based segmentation methods, such as 

thresholding [2], edge detection and linking [3], and hybrid of 

edge enhancement and thresholding method [4]. These 

techniques are usually automatic but encounter problems in 

case of variability among images. On the other hand, high 

level processing tries to utilize prior knowledge of generic 

thoracic images including global and/or local features. For 

example, deformable model incorporating edge information 

called Active Contour Model (also known as Snake) [5], and 

deformable model incorporating prior knowledge called 

Active Shape Model (ASM) [6] have been shown to be 

effective for segmenting lung field. 

Snake is a curve evolution method based on the balance of 

external and internal forces or energies [7]. The internal force 

is a parametric model which ensures the curve stretchable and 

bendable, and the external force drives the curve to desired 

image features, such as edges, lines and terminations. Since 
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the Snake’s internal force only keeps the shape smooth and is 

sensitive to parameters selection, Cootes et al [8] proposed the 

ASM method which applied a statistical shape model 

incorporating the prior knowledge of the object for more 

accurate segmentation. However, both typical ASM and 

Snake use local image features for curve evolution. Without 

global regulation, the performances of these local schemes 

rely heavily on good initialization. If the initialization is not 

done properly, the control points may get trapped in a local 

optimum during search. To increase the robustness, Xu et al [9] 

proposed a Gradient Vector Flow-based Snake (GVF-Snake) 

by diffusing the gradient vectors of the image into a global 

field and used this field as Snake’s external force to guide 

points evolution. Furthermore, Yuan et al [10] incorporated 

the GVF into ASM method for image segmentation.  However, 

its points evolution equation is linear to the GVF and may not 

be efficient for segmentation. 

In this paper, we propose a modified GVF-ASM method 

using a nonlinear function of the global GVF field for shape 

model fitting. The points evolution is regulated by both the 

direction and magnitude of the global GVF field. Algorithms 

are applied to 50 (normal and abnormal) chest radiographs 

and the segmentation results are compared with the ground 

truth contours specified by an expert. 

The rest of this paper is organized as follows: Section II 

provides brief related background work on the ASM-based 

segmentation methods. In Section III, our method is described 

in detail, followed by Section IV which shows the 

experimental results. Conclusions are discussed in Section V. 

II. REVIEW OF RELATED WORK 

This section briefly reviews the ASM segmentation scheme 

which was first proposed by Cootes et al in [8] and later 

refined by many researchers [6] [10]. The general layout of 

the ASM-based segmentation methods contains two parts: 1) a 

Point Distribution Model (PDM) generated in the training 

stage; 2) an iterated algorithm used for fitting the model by 

minimizing some cost function in the test stage. 

A. PDM Generation 

The kernel part of the ASM method is the PDM, which 

usually includes a shape model and a gray level appearance 

model (or profile model) based on the statistical analysis of 

training images. 

Shape Model: A deformable shape model is computed by M 

shapes from the training images. Assume that each shape is 
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represented with � points annotated by a human observer, the 

i
th
 contour C

i
 in the training images is a set of � points: 

{ }1 1 2 2
( , ), ( , ),...( , ) , 1,2,... .i i i i i i i

� �
C x y x y x y i M= =     (1) 

By performing a Principal Component Analysis (PCA), any 

shape in the training set can be approximated by: 

C C Pb≈ +                  (2) 

where C denotes the mean shape of the training set, 

P=[p1,p2,…pl] with size of 2�×l is the matrix of the first l 

eigenvectors, and b=[b1,b2,…bl]
T
 is a vector of weights that 

defines the shape parameters. By allowing a variation range, 

this method ensures the gross similarity among shapes. 

Profile Model: PCA is applied to characterize the gray level 

variation of each control point in the shape model, i.e.: 

z z
z z P b= +                  (3) 

where z denotes the mean gradient profile along each control 

point’s normal direction, Pz is a matrix consisting of 

significant modes of gray level variations, and bz is a vector of 

weights that defines the gray level parameters. 

B. ASM-based Segmentation 

Given a candidate test image, ASM-based segmentation has 

two main steps: initial contour estimate based on PDM and 

control points evolution for accurate segmentation. A 

simplified schematic of this process is shown in Fig.1. 

1) Initial Contour Estimate 

It can be done by manually adjusting the mean shape using 

a transformationΤ , whereΤ  is a function of rotation θ , 

scaling s, and translation (tx, ty).  This user-guided pose 

initialization lets the initial contour approximately close to the 

lung field in the test image under the constraints of the training 

set.  

2) Points Evolution 

Typical ASM method for segmentation only exploits the 

control point’s profile model based on local gradient feature. 

For example, in a test image, best matches are made from each 

control points’ profile model using the target points along the 

searching profile (See Fig. 2). Then, a displacement of the 

model instance (dC) can be calculated according to the shape 

model, which leads to the corresponding adjustments to both 

the pose parameters (dθ , ds, (dtx, dty)) and shape parameters 

(db). This process is iterated until b converges or little change 

is seen along all control points. 

C. GVF-ASM Segmentation 

The schematic of the GVF-ASM method presented in [10] 

is shown in Fig. 3. The main differences from the typical 

ASM-based segmentation include an independent GVF 

calculation and a GVF-driven points evolution. 

1) GVF calculation 

By introducing a global gradient vector flow field g = 

(u(x,y), v(x,y)) of a test image, the image’s edge map f will be 

diffused so as to allow long range attraction of the contour 

towards the object boundary [9]. The vector field g is defined 

by minimizing the energy functional:  
2 22 2 2 2( )ext x y x yE u u v v f g f dxdyη= + + + + ∇ −∇∫∫  (4) 

whereη is the smoothing factor, and f∇  is the gradient of 

the edge map. The u and v can be calculated by applying 

variational calculus and numeric methods (see details in [9]). 

It can be seen that target contour has large g value and on both 

sides of an edge the vectors point toward the edge. 

2) Points Evolution 

To integrate GVF with ASM, the control points of an active 

shape should be steered by both the direction and magnitude 

of g. Let { }1 1 2 2( , ),( , ),...( , )� �C x y x y x y=  denote the current 

coordinates of the control points, and 

{ }' ' ' ' ' ' '

1 1 2 2( , ),( , ),...( , )� �C x y x y x y=  denote the coordinates of 

the points in the previous iteration. The points evolution 

equation including a given step size w and an annealing factor 

k is given as follows [10]: 

' ' ' '( ) ( ).
q

p
C C w k g C C w g C

t
= + ⋅ ⋅ = +     (5) 

Note that the annealing factor 
q

p
k

t
=  (constants p, q ≥ 1) 

decreases as the iteration time t increases. 

III. PROPOSED METHOD 

The GVF-ASM is an efficient technique for image 

segmentation, and has the potential to perform well for lung 

field segmentation. However, points evolution Eq. (5) has two 
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Fig. 3. Schematic of GVF-ASM method. 
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Fig. 1. Schematic of ASM-based Segmentation. 

 
 

Fig.2. Searching an approximate model fit for target points to which 

control points may move [11]. 
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limitations: First, three parameters w, p and q need to be 

chosen before searching and may need to be adjusted every 

time for segmenting different test images; Next, in the 

application of segmenting lung field, the edges of lung contour 

in a chest radiograph are usually blurred, which means the 

magnitudes of the gradient vectors close to these contour 

edges changes smoothly. But in Eq. (5) the power function 1/t
q
 

decreases too fast compared to the corresponding increase of 

magnitude of the gradient vector, which will lead to an early 

convergence.  

In order to reduce the complexity and improve the accuracy 

of searching, we propose a new points evolution equation as 

follows: 
'( )' 'sgn( ( ))

g C
C C w g C e

−
= + ⋅ ⋅          (6) 

where sign function sgn keeps the GVF vector’s direction and 

the function exp(-|g(C’)|) works as a smooth monotonically 

decreasing function which attracts the points to strong edges.  

Fig. 4 illustrates the differences in the points evolution 

using Eqs. (5) and (6) for a given 1-D GVF {0.01,0.02,...,g =  

1, 1, 0.99,..., 0.01}.− − −  Note that g is a GVF field corresponding 

to 200 points (1 200x≤ ≤ ), and the strong edges lie at x = 100 

(when 1g = ) and x = 101 (when 1g = − ). The horizontal axes 

represent the iteration time t, and the vertical axes represent 

the control point’s new coordinate x at different t. In Fig. 4, the 

plots show the evolution of control point x over time t. It is 

observed in Fig. 4 (a) that evolution corresponding to both Eq. 

(5) and (6) converge to the expected strong edges (x = 100 and 

x = 101) with parameters w = p = q = 1 for Eq. (5) and w = 1 

for Eq. (6). However, in Fig. 4 (b), the evolution of control 

point using Eq. (5) leads to an early false edge convergence 

with w = q =2, p = 1, while the result of using Eq. (6) still 

accurate with w = 2. In other words, points evolution Eq. (5) is 

sensitive to parameters selection. 

Fig. 5 shows another example with a different 1-D GVF 

whose value changes more rapidly compared to the g 

considered in Fig. 4, {0.01,0.06,..., 0.96, 0.96, 0.91,...,g = − −  

0.01},−  where the strong edges lie at x = 20 (when 0.96g = ) 

and x = 21 (when 0.96g = − ). It is observed that the point 

evolution using Eq. (5) has strong ringing effect, and jumps 

too far away from the strong edges position.  

From the analysis of Fig. 4 and 5, the proposed points 

evolution equation works more accurate and stable, and it can 

also be proved in 2-D domain. Fig. 6 shows some intermediate 

results of our points evolution process compared to Eq. (5).  

After the subsequent location for all control points are 

found, the shape model’s parameters are updated within 

constraints. And the stopping criteria could be the number of 

iteration times or a threshold of the points’ Euclidean distance 

between two consecutive iterations. 

 

IV. PERFORMA-CE EVALUATIO- 

In this section, we present the performance evaluation of 

the proposed method, and compare it with the typical ASM [8] 

and GVF-ASM [10] methods. 

For the evaluation we use two databases of Postero- 

Anterior chest radiographs: 1) The Japanese Society of 

Radiological Technology (JSRT) database; 2) CXR image 

database from the Univ. of Alberta Hospital. Images are 

resampled into 512×512 pixels (or close to this size) with 8 

bit gray levels and are equally divided into left lung and right 

lung images. We define lung field as those parts of a chest 

radiograph which contain lungs not obscured by diaphragm, 

mediastinum and heart [12], before doing the experiments. 

For images from JSRT database, we use an aligned training 

set of M = 20 left or right lung field contours, annotated with 

N = 30 control points. Six principal component vectors, which 

represent 90% of the total variance of the training set, are used 

   
Fig. 6. 2-D points evolution using Eq. (5) and (6) with w=1, p=20, 

q=1, where solid line (blue) for Eq. (5) and dotted line (red) for Eq. (6).  

(a) (b) 
Fig. 4. Example of 1-D point evolution using Eq. (5) and (6), where 

solid line (blue) for Eq. (5) and dotted line (red) for Eq. (6). 

 
Fig. 5. Another example of 1-D point evolution using Eq. (5) and (6), 

where solid line (blue) for Eq. (5) and dotted line (red) for Eq. (6). 
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to model the shape variation of the aligned training set of the 

lung field. Similarly, for our CXR database with fewer chest 

radiographs, M = 10, N = 30. After PDM-based rough contour 

initialization on the test image, segmentation methods of 

typical ASM, GVF-ASM and the proposed method are 

performed. 10 normal chest radiographs from JSRT database 

and 10 abnormal from CXR database are tested. Fig. 7 shows 

example images of one experiment.  

Expert radiologists helped to manually draw lung field 

contours for both test and training images using a display 

program with a mouse-controlled interface. Assuming the 

manually outlined contour as the ground truth, the 

performances of different segmentation methods are 

evaluated by the overlapping degree Ω between manually 

outlined contour A and contour B obtained by using 

semi-automatic segmentation methods. In this paper we use Ω 

as the performance measure of a segmentation technique, and 

Ω is computed as follows: 

TP
×100

TP+FP+FN
Ω = =   

A B

A B

I

U
％        (7) 

where A and B are the sets of all pixels enclosed by contours A 

and B. And TP, FP, FN stand for the true positive, false 

positive and true negative areas, respectively. The evaluation 

results are listed in TABLE I, where μ,σ, and median are the 

expected value, standard deviation and median value of Ω, 

respectively. It can be seen that our method outperforms the 

other algorithms by at least 3-5% considering both mean and 

median.  

V. CO-CLUSIO-S 

We proposed a GVF-ASM method with exponential points 

evolution for lung field segmentation. The experimental 

results demonstrated that the proposed method improves the 

robustness and accuracy of the segmentation. 
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(a) (b) (c) 

   
(d) (e) (f) 

Fig.7. Performance of the proposed method for lung field segmentation 

(a) Left lung image for test; (b) Manually outlined contour; (c) A 

PDM-based initialization using 20 training images; (d) ASM [8] result; 

(e) GVF-ASM [10] result; (f) Proposed method’s result. 

TABLE I 

SEGMENTATION METHODS EVALUATION 

JSRT Database Left Lung Right Lung 

 μ σ 
media

n 
μ σ 

media

n 

ASM[8] 
83.4

% 

4.6

% 
84.2% 

84.1

% 

3.3

% 
85.2% 

GVF-ASM[10] 
84.9

% 

3.3

% 
84.6% 

87.8

% 

3.0

% 
87.4% 

Proposed 
88.1

% 

2.7

% 
88.6% 

90.1

% 

2.7

% 
89.6% 

CXR Database Left Lung Right Lung 

 μ σ 
media

n 
μ σ 

media

n 

ASM[8] 
77.4

% 

6.8

% 
77.1% 

84.6

% 

4.5

% 
84.7% 

GVF-ASM[10] 
80,8

% 

6.7

% 
82.5% 

87.6

% 

2.1

% 
87.2% 

Proposed  
83.8

% 

7.6

% 
84.7% 

89.3

% 

2.1

% 
89.0% 
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