
  

  

Abstract—Accurate objective automated liver segmentation 

in PET-CT studies is important to improve the identification 

and localization of hepatic tumor. However, this segmentation 

is an extremely challenging task from the low-contrast CT 

images captured from PET-CT scanners because of the 

intensity similarity between liver and adjacent loops of bowel, 

stomach and muscle. In this paper, we propose a novel 

automated three-stage liver segmentation technique for 

PET-CT whole body studies, where: 1) the starting liver slice is 

automatically localized based on the liver – lung relations; 2) 

the “masking” slice containing the biggest liver section is 

localized using the ratio of liver ROI size to the right half of 

abdomen ROI size; 3) the liver segmented from the “masking” 

slice forms the initial estimation or mask for the automated 

liver segmentation. Our experimental results from clinical 

PET-CT studies show that this method can automatically 

segment the liver for a range of different patients, with 

consistent objective selection criteria and reproducible 

accurate results.  

I. INTRODUCTION 

EDICAL imaging has an integral role in the diagnosis 

and management of liver diseases, in particular in the 

detection / localization and characterization of various types 

of malignancy [1]. On occasions it can be problematic to 

characterize lesions that lie adjacent to but not involve the 

liver such as thoracic tumors involving the lateral 

costophrenic angles overlying the liver surface and tumors in 

bowel or adjacent stomach that abut the liver surface. Liver 

segmentation from multimodal and monomodal medical 

images thus can have an important role in clinical 

management [2]. However, the anatomical relationships to 
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adjacent organs – the diaphragm, costophrenic angles, lower 

chest wall, right kidney, stomach and bowel – mean that 

automated liver segmentation from CT images is a 

challenging task. Many of these organs have similar densities 

on non-contrast enhanced CT scans and so it is difficult to 

extract the liver boundaries by conventional segmentation 

techniques based on grey level intensities [3]. The hepatic 

parenchyma can also have a different appearance between 

patients due to fatty infiltration and the scan technique [4].  

 Segmentation methods based on grey levels are widely 

used for automated liver segmentation from CT images. 

Based on these methodologies, statistical analysis [4, 5, 6] 

and clinical knowledge analysis [7] have been proposed to 

improve the accuracy and performance of liver segmentation. 

Registration-enhanced deformable segmentation was applied 

on the liver segmentation [8]. However, these methods might 

fail to accurately segment the liver because of large 

inter-patient and intra-patient grey level variability.  

 Combined PET-CT scans provide anatomical (CT) and 

functional (PET) information. Through the identification of 

regions of increased FDG uptake (or “hotspots”) on PET, 

which are typically found with liver tumors and where the CT 

can be normal, PET-CT is often now used as a staging 

investigation [9] and also to assess response to therapy. 

Unlike conventional, multi-phase, contrast-enhanced hepatic 

CT imaging PET-CT scanners provide low-contrast CT 

images. Thus any automated liver segmentation from these 

low-contrast CT images is consequently more challenging. 

Further, current semi-automatic or automatic liver 

segmentation approaches for the high-contrast CT images are 

not directly applicable to low-contrast CT.  In this paper, we 

propose a method, which aims to accurately identify the gray 

level intensities of the liver on the basis of clinical knowledge, 

and automatically segments the liver from the low-contrast 

CT images that are captured from the combined PET-CT.   

II. PROPOSED METHOD  

The framework of our algorithm is shown in Fig.1. The 

preprocessing step includes removal of background noise and 

the patient bed; then using the topological relationship 

between the lung and liver, the starting liver slice is 

determined. The “masking” slice, which contains the biggest 

liver section, is then localized automatically based on the 

ratio of liver region of interest (ROI) size to the right half of 

abdomen (LTRA) ROI size. The automated segmentation is 

then performed sequentially over the whole liver volume that 

 Automated Liver Segmentation for Whole-Body Low-Contrast CT 

Images from PET-CT Scanners 

  Xiuying Wang, Changyang Li, Stefan Eberl, Michael Fulham and Dagan Feng 

M 

3565

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



  

is based on the “masking slice” obtained.  

 

A. Stage one: Pre-processing 

1) Noise and patient bed removal: The background and 

patient bed are removed from the raw clinical data as an 

initial step to improve the accuracy of the segmentation. The 

Hounsfield unit (HU) of the background noise is much lower 

than other information in the image and so with histogram 

analysis the noise is successfully removed by a single 

threshold (-400HU in our experiments). Based on our 

previous work on automated lung segmentation [10], the 

pre-processing of the bed removal starts with the first lung 

slice. Then, applying the flood-fill operation to both the 

abdomen and bed regions, the biggest connected region that 

represents the abdominal region can be determined and the 

remaining bed region is removed.   

2) Automated localization of starting liver slice: Based on 

our automated lung segmentation [10] and by utilizing the 

topological relationship of lung and liver, our algorithm 

firstly detects the starting liver slice from the whole body 

volume. 

The intensity values of the lungs are very different from the 

liver values. The right lung axial slices are detected from the 

bottom-up to identify the first liver slice. In this sequence of 

bottom-up lung slices, the size of the liver ROI residing inside 

the right lung decreases slice by slice. The slice where the size 

of the liver ROI reduces to < 150 pixels is considered as the 

starting liver slice in our algorithm. 

B. Stage two: “Masking” liver slice localization  

1) Ratio of liver ROI size to the right half of the abdomen 

(LTRA) ROI size: Our algorithm is based on the “masking” 

slice proposed by Bae, et al [5] and extended to liver 

segmentation with the gradient vector flow (GVF) method 

[11] to initialize the segmentation. The “masking” slice 

containing the biggest liver region can prevent the 

deformable model leaking into other organs and improve the 

efficiency of the algorithm [11]. However, the localization of 

the “masking” slice in these methods is not fully automated 

and requires user interaction.  

In our algorithm, the knowledge that the liver occupies the 

majority of right half of corresponding abdominal section, is 

utilized to localize the “masking” slice automatically. Based 

on this prior knowledge, LTRA (as Equ. 1), is used to localize 

the “masking” image.   

( )1         
RA(x)

LROI(x)
 LTRA(x) =          

where LROI(x) is the number of liver ROI pixels, and RA(x) 

is the number of pixels of the right half of the abdominal 

region. The centroid of the vertebral column is used to 

separate the right and left halves of the abdomen. The pixels 

with value greater than 0HU in the region of right half of the 

abdomen are classified as the liver ROI [12].  

However, because soft tissue and muscle vary across the 

patients, the LTRA spans a wide range of values. Bae, et al [5] 

identified that even for the same liver volume, the ratio 

distribution ranged from 10% to 32.2% for different slices 

with relative big liver regions. Therefore, the biggest LTRA 

does not reliably identify the “masking” liver slice. To 

localize an accurate “masking” slice automatically, muscle 

must be removed before the calculation of LTRA.   

Differentiating muscle from liver can be difficult even for 

high-contrast CT images. Lim, et.al [4] and Gao, et al [13] 

used morphological filters to remove the muscle adjacent to 

the liver. In low-contrast CT images, the intensity 

distribution of muscle lying adjacent to the liver region 

overlaps that of the liver and therefore the histogram analysis 

is not helpful.  

2) Muscle removal: The muscles of the lower chest wall 

and upper abdomen overlying the liver are interspersed with 

ribs in the right upper quadrant of the abdomen. Ribs have 

high density values and are readily extracted. The extracted 

ribs provide sufficient inflation force to prevent the balloon 

active contour overflowing into the muscle, and can guide the 

balloon active contour to exclude the muscle around the liver 

region. This muscle removal procedure peels both muscle and 

soft tissue (fat and skin) outside the ribs. This strategy is 

applied to the right side of the abdomen to hasten the muscle 

removal. With this approach, after muscle removal, the 

LTRAs of the ‘masking’ slices for different patients’ datasets 

can be fitted in the range of 75% to 82%.  

C. Stage three:  Automated liver segmentation 

1) Initial liver ROI segmentation by histogram analysis: 

After muscle and soft tissue removal, the histogram of the 

first “masking” slice with the highest LTRA has a single 

major peak, which includes majority of pixels being 

corresponded to the liver ROI, and is used to extract the 

initial liver ROI by adaptive thresholding. The method can 

overcome streak artifacts produced by the “arms-down” 

position into liver region [14].  

2) Refinement and smoothing: After the thresholding, most 

of neighboring organs and tissues are removed. Parts of 

internal organs and neighboring tissues, however, still 

“Masking” slice localization  

• Muscle & soft tissue removal 

• Calculation of LTRA  

Automated liver segmentation  

• Initial liver boundary extraction  

• Boundary refinement & smoothing  

Pre-processing  

• Noise and bed removal  

• Localization of starting liver slice  

Fig.1. Framework of automated liver segmentation. 
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remain. Morphological operations are then performed to 

remove these objects and preserve the complete liver region. 

An opening operation, with a 3-by-3 disc-structuring element, 

is used to disconnect and remove neighboring structures 

connected to the liver object.                           

This stage of refinement and smoothing is required to 

reach the real liver boundary. We employed the level-set 

algorithm to refine the liver boundary and used the 

image-based features in the governing differential equation 

[15]. Two input images are required by this algorithm: the 

binary image after the morphological operations as the best 

guess position, and the original image as the feature image.   

3) The segmentation of whole liver volume: The segmented 

liver region from the “masking” slice is the biggest liver 

section in the axial view, and therefore, it can be used as a 

mask for the liver ROI in the other slices of the liver volume. 

However, the position, the size and the shape of the liver ROI 

may vary across the slices.  To provide full coverage of the 

liver ROI, the mask slice is anisotropically dilated by using 

the disk illustrated in the figure 2. To avoid error 

accumulation, the mask is replaced by the current segmented 

liver region every three slices.  

 
Fig.2. Dilation disk. 

III. EXPERIMENTAL RESULTS AND DISCUSSION  

A.  Clinical datasets 

We validated our method on clinical PET-CT studies from 

the Royal Prince Alfred (RPA) Hospital. CT acquisition 

settings were 120kVp.  The CT images were 512 * 512 pixels 

with 16-bit quantization and 3mm thickness.  

B. Automated liver segmentation procedure 

Fig.3 illustrates the step-by-step automated liver 

segmentation procedure from whole-body CT volumes. 

   

 
 

 

  

  

Fig .3.  Step by step segmentation procedure. 

C.  Effect of removing muscle 

The three histograms in Fig.4 represent segmented soft 

tissues and muscle regions and liver regions for the 

“masking” slice from three different CT volumes. The much 

lower fat density value means it is easily removed with a 

single threshold. The statistical data show that the muscle 

overlaps with the liver density range (~0 HU to 100 HU). The 

extracted ribs when used as the guidance for balloon active 

contouring, solves this problem.   

 
Fig. 4. The histograms of segmented fat & muscle and liver from three 

clinical CT datasets to demonstrate that muscle and liver overlap over the 

same intensity range (~ 0HU to 100HU).         

The histograms in the Fig.5 illustrate the effect of muscle 

removal in the “masking” slice. The histogram of the image 

after muscle and fat removal contains predominately pixels 

belonging to the liver region. The step of muscle removal is 

important to improve the accurate masking slice extraction 

and liver segmentation from low-contrast CT images.  

 
Fig.5. The histograms of the image after pre-processing, the segmented fat 

and muscle, the segmented liver, and after removal of fat and muscle. 

a. Input Images 

after bed and noise 

removal 

 

c. Muscle removal 

 

d. Masking slice 

 (LTRA > 75%) 

e. The biggest 

connected region 

after  

thresholding & 

enhanced 

e. Complete liver 

boundary of the 

masking slice 

f. Initial mask  

i. Mask for 

sequential liver 

segmentation  
h. Dilated mask  

b. Rib 

cage 
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D. Experimental results of the automated liver 

segmentation  

We tested the algorithm on clinical low-contrast CT 

images from 10 different patients of varying sizes and shapes 

for validation. Because positioning patient with “arms down” 

or “arms-up” affects the CT image quality [14], we evaluated 

our algorithm on datasets with the “arms-down” (Fig. 6.a and 

b) and the “arms-up”  (Fig. 6.c and d). Although the 

“arms-down” position may introduce streak artifacts into the 

liver region in CT images, our results show, based on visual 

assessment that our algorithm can accurately and 

automatically segment the liver from the neighboring organs 

such as heart and stomach.  

    

    

    

    

    

    

 
a 

 
b 

 
c 

 
d 

Fig. 6. Experimental results in patients with arms down (column a and b) 

and arms up (column c and d): 1st row:  input images after noise and bed 

removal; 2nd row: muscle removal and “masking” slice identified; 3rd 

row: the biggest connected region after thresholding; 4th row: initial 

mask; 5th row: complete liver boundary of the “masking ”slice; 6th row: 

sequential liver segmentation below the “masking ”slice (5th row); 7th 

row: sequential liver segmentation above the “masking” slice (5th row).  

IV. CONCLUSION  

We propose a fully automated liver segmentation method 

for whole-body low-contrast CT images. The method can 

improve the delineation of low-contrast anatomy between the 

liver and the adjacent and surrounding tissues and organs 

that have similar intensities. Our experimental results with 

clinical data indicate that our automated algorithm can 

correctly segment the liver in a variety of patients.   
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