
Automatic delineation of the inner thoracic region in
non-contrast CT data

D.R. Chittajallu, P. Balanca, and I.A. Kakadiaris, Senior Member, IEEE

Abstract— The inner thoracic region consists of several impor-
tant anatomical structures and an accurate delineation of this
region is an essential step for various biomedical image analysis
applications. In this paper, we present a fully automatic graph-
based method for the delineation of the inner thoracic region
in non-contrast cardiac CT data. In particular, we reformulate
the problem of delineating the inner thoracic region as an
optimal surface segmentation problem, the solution to which
is obtained by computing the minimum-cost closed set in a
node-weighted directed graph. Comparing the results obtained
using our method with manual segmentations performed by
an expert on non-contrast cardiac CT scans of 20 randomly
selected patients indicated an overlap of 99.1± 0.2%.

I. INTRODUCTION

The inner thoracic region is the region enclosed within the in-
ner thoracic wall, and contains several important anatomical
structures (e.g., heart, lungs, coronary arteries). An accurate
delineation of this region is an essential step for various
biomedical image analysis applications [1]–[3].

The overall goal of this work is to improve pre-clinical di-
agnosis and risk prediction of cardiovascular disease (CVD)
based on information (e.g., coronary artery calcium, pericar-
dial fat volume) automatically extracted from non-contrast
CT scans of the thoracic region. Prior to the extraction of
such high-level information, the segmentation of the heart
and other neighboring structures enclosed within the inner
thoracic region is essential. An algorithm that is capable of
delineating the inner thoracic region accurately can be used
to obtain a good region of interest for these segmentation
problems. To the best of our knowledge, no prior attempts
were made to develop such an algorithm.

In this paper, we present a fully automatic graph-based
method for the delineation of the inner thoracic region in
non-contrast cardiac CT data. In particular, we reformulate
the problem as an optimal surface segmentation problem,
wherein the desired optimal surface corresponds to the inner
thoracic wall. Recently, Li et al. [4] proposed an effi-
cient polynomial-time method for globally optimal surface
segmentation in volumetric images. We adopt this method
to solve our surface segmentation problem. However, note
that their method is only capable of detecting terrain-like
surfaces. Since the inner thoracic wall is not a terrain-
like surface, their method cannot be directly applied to
obtain a solution to our problem. Hence, we transform the
given volumetric image such that the desired optimal surface

All authors are with the Computational Biomedicine Lab, Depts. of Com-
puter Science, Elec. & Comp. Engineering, and Biomedical Engineering,
Univ. of Houston, Houston, TX, USA

corresponding to the inner thoracic wall can be represented
as a terrain-like surface. Specifically, our method consists
of two stages. In the first stage, we take advantage of the
fact that the inner thoracic wall has a cylinder-like shape
and transform the given volumetric image using a cylindrical
coordinate transform centered about a point inside the inner
thoracic wall. We then use the surface segmentation algo-
rithm proposed in [4] to obtain a segmentation of the inner
thoracic wall. However, this segmentation is not sufficiently
accurate due to a set of issues related to the cylindrical
coordinate transform which we will discuss later. In order
to address this problem, we refine this segmentation in the
second stage. Specifically, we compute a narrow band around
the segmentation obtained in the first stage and recom-
pute the desired optimal surface within this narrow band.
We evaluated the performance of the proposed method by
comparing the results obtained with manual segmentations
performed by an expert. This work should be viewed in
the context of graph-theoretic methods for medical image
segmentation [4]–[6].

The rest of the paper is organized as follows: In Section II,
we provide a detailed description of the proposed method
for automatic delineation of the inner thoracic region. In
Section III, we present the results obtained using the pro-
posed method and compare them with manual segmentations
performed by an expert. Finally, in Section IV, we present
our conclusions.

II. METHODS

In this section, we provide a detailed description of our
method for automatic delineation of the inner thoracic region
in non-contrast cardiac CT data. A brief outline of the
proposed method is given below:

Algorithm Inner thoracic region segmentation

1. Stage 1: Transform the given volumetric image using a
cylindrical coordinate transform and compute the optimal
surface (Sec. II-B).

2. Stage 2: Recompute the optimal surface within a narrow band
around the initial segmentation obtained in stage 1 (Sec. II-C).

A. Optimal surface segmentation method (OSS)

In this section, we present a brief review of the method
proposed by Li et al. [4] for optimal single surface seg-
mentation. The solution to the optimal surface segmentation
problem is obtained by computing the minimum-cost closed
set in a node-weighted directed graph. The key innovation of
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this method resides in the construction of the node-weighted
directed graph that allows the transformation of the optimal
surface segmentation problem into the problem of computing
a minimum-cost closed set.

Consider a directed graph G = 〈V,E〉 where V is the set
of vertices or nodes and E is the set of directed edges. A
closed set of the digraph G is defined as a set of vertices
A ⊂ V such that if v ∈ A and (v, u) ∈ E then u ∈ A (i.e.,
if a vertex v is in the closed set then all its successors are
also in the closed set). Without loss of generality, let C be
the cost function that associates each vertex v ∈ V with a
real number C(v) which we refer to as the weight or cost
of vertex v. Also, let A be the set of all possible non-empty
closed sets of the digraph G. The cost of a closed set A ∈ A
is defined as the sum of costs of all the nodes belonging to
the closed set A. The minimum-cost closed set problem is
then to search for a closed set A∗ ∈ A with minimum cost.
Formally, the minimum-cost closed set problem can be stated
as: A∗ = arg min

A∈A

∑
v∈A

C(v). The minimum-cost closed set

problem can be solved in polynomial time by computing the
s-t mincut in a derived arc-weighted directed graph [6], [7].

A volumetric image I can be viewed as a 3D matrix
I(x, y, z). The desired optimal surface in I is assumed
to be terrain-like and oriented as shown in Fig. 1(a). Let
Nx, Ny and Nz denote the size of the image I in x-,
y- and z-dimensions, respectively. A feasible surface S in
I is defined by a function S : (x, y) → S(x, y), where
x ∈ X = {0, ..., Nx − 1}, y ∈ Y = {0, ..., Ny − 1} and
S(x, y) ∈ Z = {0, ..., Nz − 1}. Note that any feasible
surface intersects with exactly one voxel of each column of
voxels parallel to the z-axis, and the entire surface consists of
exactly Nx×Ny voxels. The feasibility of a surface is further
constrained by application-specific smoothing constraints,
enforced by two parameters, ∆x and ∆y , that are used to
define the smoothness constraint along x- and y-directions,
respectively. Specifically, if (x, y, z) and (x+1, y, z′) are two
voxels on a feasible surface, then |z − z′| ≤ ∆x. Similarly,
if (x, y, z) and (x, y + 1, z′) are two voxels on a feasible
surface, then |z − z′| ≤ ∆y . Smaller values of ∆x and ∆y

enforce stronger smoothing constraints on a feasible surface.

Let c : (x, y, z) → c(x, y, z) be a cost function that assigns
a cost c(x, y, z) to each voxel (x, y, z) in the image I. The
cost c(x, y, z) is an arbitrary real number that is inversely
related to the likelihood that the desired surface contains the
voxel (x, y, z). The cost of a feasible surface in I is then
equal to the sum of the costs of all the voxels belonging to
the surface, and the optimal surface segmentation problem is
to search for a feasible surface S∗ with the minimum cost
among the set of all feasible surfaces S definable in the image
I . Formally, the optimal surface segmentation problem can
be stated as: S∗ = arg min

S∈S

∑
x

∑
y

c(x, y, S(x, y)).

A node-weighted directed graph G = 〈V,E〉 is constructed
to obtain a solution to the above stated optimal surface
segmentation problem as follows. Every voxel (x, y, z) ∈ I

is associated with a vertex V (x, y, z) in the graph G. The
cost or weight w(x, y, z) assigned to the vertex V (x, y, z) is
defined as follows:

w(x, y, z) =
{

c(x, y, z) if z = 0
c(x, y, z)− c(x, y, z − 1) otherwise (1)

For each (x, y) pair in the image I such that x ∈ X and
y ∈ Y , we refer to the vertex-subset {V (x, y, z)|∀z ∈ Z}
as the (x, y)-column of G and denote it by Col(x, y).
Two (x, y)-columns are considered to be adjacent if their
corresponding (x, y) coordinates are neighbors under a given
neighborhood system. For the purposes of this paper, we
assume a 4-neighborhood setting. In this case, the column
Col(x, y) is adjacent to Col(x + 1, y), Col(x − 1, y),
Col(x, y + 1), and Col(x, y − 1). The edge set E of the
digraph G consists of two types of edges, intra-column edges
and inter-column edges, which are defined as follows [4]:

• intra-column edges: Within each column Col(x, y), every
vertex V (x, y, z), z > 0 has a directed edge to the vertex
V (x, y, z − 1).

• inter-column edges: Without loss of generality, consider
two adjacent columns Col(x, y), x < Nx − 1, and
Col(x+1, y) along the x-direction. Each vertex V (x, y, z) ∈
Col(x, y) is connected by a directed edge to the vertex
V (x + 1, y, max(0, z −∆x)) ∈ Col(x + 1, y). Also, a di-
rected edge is established from the vertex V (x + 1, y, z) ∈
Col(x + 1, y) to the vertex V (x, y, max(0, z − ∆x)) ∈
Col(x, y). Similar construction is performed for two adjacent
columns along the y-direction. Figure 1(b) depicts the edges
between the two adjacent columns along the x-direction. Note
that these inter-column arcs are responsible for guaranteeing
that if a voxel (x, y, z) is on a feasible surface S, then
its neighboring voxel (x + 1, y, z′) on the surface S along
the x-direction satisfies the required smoothness constraint,
|z − z′| ≤ ∆x. The same holds for two adjacent columns
along the y-direction.

With the above-described graph-construction, it is easy to
show that the minimum-cost closed set of the graph G solves
the optimal surface segmentation problem.

(a) (b)

Fig. 1. Optimal surface segmentation problem. (a) Orientation of the
optimal surface. (b) Two adjacent columns along the x-direction of the
constructed node-weighted digraph.
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B. Stage 1: Initial segmentation of the thoracic wall using
a cylindrical coordinate transform

We reformulate the problem of delineating the inner thoracic
region as an optimal surface segmentation problem wherein
the desired optimal surface corresponds to the inner thoracic
wall. We use OSS (see Sec. II-A) to solve the optimal surface
segmentation problem. However, in order to use OSS, the
desired optimal surface should be terrain-like, as depicted in
Fig. 1(a), which is not the case for our problem. Hence, we
transform the given volumetric image such that the desired
optimal surface corresponding to the inner thoracic wall can
be represented as a terrain-like surface. Specifically, we take
advantage of the fact that the inner thoracic wall has a
cylinder-like shape and transform the given volumetric image
using a cylindrical coordinate transform (CCT) centered
about a point inside the inner thoracic wall. We will refer to
this transformed image space as the CCT space.

The key to achieving a good segmentation result to any given
problem using OSS resides in the design of a good cost
function c(x, y, z) (Eq. 1). From prior knowledge about the
location of the inner thoracic wall, we require the optimal
surface to pass through the set WLB of voxels along the
inner walls of the ribcage and the outer walls of the lungs. In
order to incorporate this prior knowledge, we first perform a
rough segmentation of the lungs and the ribcage using simple
thresholding and connected component analysis. Figures 2(a)
and (b) depict an overlay of the lung and ribcage masks
in the original and CCT space, respectively. We can then
easily identify the set WLB of voxels in the CCT space as
the “bottom-most” voxels of the lungs and the “top-most”
voxels of the ribcage in each (x, y)-column. A very low cost
must be assigned to these voxels in order to impose a hard
constraint that the computed optimal surface passes through
these voxels. In the case where none of the voxels in an
(x, y)-column belong to the set WLB , which occurs at the
interface between the mediastinum and inner-thoracic wall,
we require the optimal surface to pass through the nearest
fat-to-muscle transition. This can be captured by a positive
y-gradient in the CCT space. Based on the above discussion,
we design the cost function as follows:

c(x, y, z) =
{

cmin if (x, y, z) ∈WLB

−gy(x, y, z) otherwise (2)

where gy denotes the y-gradient in the CCT space and
cmin < min(gy). Figure 2(c) depicts the cost function on a
slice in the CCT space. Given this cost function, we then use
OSS to compute the globally optimal surface. Figures 2(d)
and (e) depict the segmentation result obtained in the CCT
space and the original image space, respectively.

The quality of the segmentation result obtained in this stage
depends on the angular and radial resolution of the CCT
transform. The finer the angular and radial resolution, the
better would be the segmentation result. However, the finer
the resolution, the bigger would be the size of the graph
and the higher would be the memory requirements and

the computational time needed to solve the optimal surface
segmentation problem. In order to address this issue, we
compute the optimal surface with a coarser angular and radial
resolution in this stage and further refine it in the second
stage of our method (Sec. II-C).

C. Stage 2: Refinement of the initial segmentation within a
narrow band

In this stage, we refine the initial segmentation result ob-
tained in the first stage by recomputing the optimal surface
in a narrow band around it. In order to compute the band,
we first compute the minimum intensity projection of the
initial segmentation result along the z-axis of the image
space. We then erode and dilate this mask to define a narrow
band around the initial segmentation result. Note that the
band computation is performed in the original image space
and the same band is used in all the axial slices of the
given volumetric image. Figure 3(a) depicts the narrow band
computed in an axial slice. Once the band computation is
complete, we flatten the portion of the volume within this
band as depicted in Figure 3(b). We then use OSS to compute
the optimal surface in this new band space. Note that we
use the same cost function in both stages of our method.
Figure 3(c) depicts the cost function in the band space.
Figures 3(d) and (e) depict the segmentation result obtained
in the band space and the original image space, respectively.

III. RESULTS AND DISCUSSION

We applied our Inner thoracic region segmentation algorithm
on non-contrast cardiac CT scans of 20 randomly selected
patients. The non-contrast cardiac CT scans were acquired
on an electron-beam CT (EBCT) scanner (GE Imatron).
For each scan, a stack of 20-36 contiguous slices were
acquired with a slice thickness of 3 mm each. The pixel sizes
ranged from 0.508 mm to 0.586 mm. The accuracy of the
segmentation results obtained was evaluated by measuring
the degree of overlap with manual segmentation performed
by an expert. The degree of overlap was estimated us-
ing the Dice similarity coefficient (DSC). Table I provides
descriptive statistics of the DSC measure obtained in the
first and second stages of our method. We used DSC to
measure the degree of overlap in the entire volume (Total
Overlap) and also within the narrow band (Band Overlap)
used in the second stage of our method. As is evident from
Table I, the DSC of stage 2 is significantly higher than that
of stage 1. This indicates that the refinement performed in
stage 2 significantly improves the segmentation performance.
Figure 4 depicts 3D visualizations of the segmentation results
obtained using our method on non-contrast cardiac CT scans
of four randomly selected patients.

IV. CONCLUSION

In this paper, we have presented a fully automatic graph-
based method for the delineation of the inner thoracic region
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(a) (b) (c) (d) (e)

Fig. 2. Stage 1: (a,b) Overlay of the lung (red) and ribcage (green) masks in the original and CCT space, respectively. (c) Negative of the cost function
used for the optimal surface segmentation problem. (d,e) Overlay of the segmentation result obtained in the CCT and original image space, respectively.

(a) (b) (c) (d) (e)

Fig. 3. Stage 2: (a) Narrow band computed around the segmentation result obtained in stage 1. (b) Band unwrapped image overlayed with the lung (red)
and ribcage (green) masks. (c) Negative of the cost function used for the optimal surface segmentation problem. (d,e) Overlay of the segmentation result
obtained in the band space and the original image space, respectively.

Fig. 4. 3D visualization of the segmentation result obtained using our method on non-contrast cardiac CT scans of four randomly selected patients.

TABLE I
DESCRIPTIVE STATISTICS OF THE DICE SIMILARITY COEFFICIENT

(DSC) OBTAINED IN THE FIRST AND SECOND STAGES OF OUR METHOD.

DSC (mean± std) DSC Range
Total Overlap Stage 1 0.985± 0.005 [ 0.962, 0.990 ]
Total Overlap Stage 2 0.991± 0.002 [ 0.981, 0.993 ]
Band Overlap Stage 1 0.945± 0.014 [ 0.910, 0.971 ]
Band Overlap Stage 2 0.968± 0.007 [ 0.950, 0.981 ]

in non-contrast cardiac CT data with very encouraging
results. The proposed method can be easily adapted for the
data from other imaging modalities (e.g., CTA and MRI).
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