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Abstract—Computed tomographic (CT) images are widely
used in the diagnosis of stroke. In this paper, we present
an automated method to detect and classify an abnormality
into acute infarct, chronic infarct and hemorrhage at the
slice level of non-contrast CT images. The proposed method
consists of three main steps: image enhancement, detection
of mid-line symmetry and classification of abnormal slices. A
windowing operation is performed on the intensity distribution
to enhance the region of interest. Domain knowledge about the
anatomical structure of the skull and the brain is used to detect
abnormalities in a rotation- and translation-invariant manner.
A two-level classification scheme is used to detect abnormalities
using features derived in the intensity and the wavelet domain.
The proposed method has been evaluated on a dataset of 15
patients (347 image slices). The method gives 90% accuracy
and 100% recall in detecting abnormality at patient level; and
achieves an average precision of 91% and recall of 90% at the
slice level.

I. INTRODUCTION

Stroke is a disease which affects vessels that supply blood

to the brain. A stroke occurs when a blood vessel either

bursts or there is a blockage of the blood vessel. Due to lack

of oxygen, nerve cells in the affected brain area is not able

to perform basic functions and cause sudden death. Stroke

results in serious long term disability or death. According

to the World Health Organization, 15 million people suffer

from stroke, of these 5 million die and another 5 million

are permanently disabled [1]. Strokes are mainly classified

in two categories: 1) Ischemic stroke or infarct (due to lack

of blood supply) and 2) Hemorrhagic stroke (due to rupture

of blood vessel). Between these, ischemic stroke accounts

for about 80 percent of all strokes [1]. However, it is also

possible that both these types co-occur. During treatment,

differentiation between ischemic and hemorrhagic stroke is

of fundamental importance.

Computed tomography (CT) and magnetic resonance

imaging (MRI) are the two modalities that are regularly used

for brain imaging. CT imaging is preferred over MRI due to

wider availability, lower cost and sensitiveness to early stoke.

In most instances, CT provides information required to make

decisions during emergency [2]. In CT images, a hemorrhage

appears as a bright region (hyper dense) well contrasted

against its surrounds. On the other hand, an ischemic stroke

appears as a dark region (hypo dense), with the contrast
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relative to its surround depending on the time elapsed since

the stroke occurred. Sample images are shown in Fig. 1.

The contrast starts by being poor in the early stages and

improves over time as seen in Fig. 2. This is due to the fact

that the density of the infarct region changes with the passage

of time until it approaches the density of the cerebro-spinal

fluid (CSF). Fig. 2 shows instances of early and late-stage

of ischemic stroke.

Fig. 1. (a) Ischemic stroke(shown as dark black area), (b) Hemorrhagic
stroke(shown as bright white area).

Automatic detection of stroke is thus challenging as the

structures vary in contrast with time and shape (see Fig. 3(a)).

Complex combinations as shown in Fig. 3(b) can also occur.

Fig. 2. CT exhibiting (a) early stage infarct (as pointed by arrow), (b) an
old infarct (dark region)

Fig. 3. (a) acute infarct (as pointed by arrow) (b) Hemorrhage (bright
region) with infarct like edema (dark region)

In this paper, we present a unified method to detect

both types of strokes from a given CT volume data. The

proposed method is based on the observation that stroke

presence disturbs the natural contra-lateral symmetry of a
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slice. Accordingly, we characterize stroke as a distortion

between the two halves of the brain in terms of tissue density

and texture distribution. The novel feature with our approach

is that it is able to distinguish between acute, chronic infarcts

and hemorrhages, which has not been addressed by any

previous work. In the next section, we briefly review the

existing work on stroke detection from non-contrast CT data.

II. RELATED WORK

Most existing work on stroke detection mainly focus on

hemorrhagic stroke detection. The approach in [3] exploits

the fact that the hemorrhagic tissues are brighter than the

normal tissues and hence uses a histogram-based k-means

initial clustering followed by final segmentation using 3D

morphological binary dilation of the initial clusters. Knowl-

edge based approaches have been proposed in [4] and [5]. An

unsupervised fuzzy clustering and expert system-based label-

ing of pixels is performed in the former while thresholding

and morphological operations are done to segment candidate

regions in the latter. The hemorrhagic candidates are then

subjected to a knowledge based classification system that

makes use of various image and anatomical features to sepa-

rate the artifacts from the detected hemorrhagic candidates. A

more comprehensive review of other methods for hemorrhage

analysis can be found in [6]. More recently, wavelet-based

texture analysis has been used to first eradicate all the nasal

cavity slices followed by intensity based thresholding [7] to

identify the stroke-affected regions.

In comparison to hemorrhagic stroke, considerably less

attention has been paid towards detection of ischemic stroke

due to its challenging nature. Suspicious regions are identi-

fied heuristically in [8] assuming the abnormal region would

have grey values which are outliers compared to normal brain

pixels. Further, assuming the abnormality can occur only on

one side of the brain, symmetry is used to identify a set of

suspicious pixels and later classified as abnormal based on

connectivity. However, clinical data indicates that stroke can

occur bilaterally in the brain, which invalidates the above

assumption. Methods for segmenting and enhancing infarcts

from given CT slices have also been reported in literature.

Texture features are used to identify and segment infarcts in

[9] while a rule based approach has been used in the latter in

[10]. Solutions for curvelet-based enhancement of the early

stage infarct has been proposed in [11]. Thus, based on the

above it appears that the problem of detecting both type of

stokes in a given CT volume has not been addressed.

III. PROPOSED METHOD

We model our approach based on the procedure followed

by the radiologists who detect abnormality by examining

the dissimilarity between the left and right hemispheres of

the brain. Hence, in our approach, we relate the appearance

changes in the two hemispheres to the changes in the overall

shapes of their respective histograms. The shapes of the

histogram is markedly different for chronic and hemorrhagic

stroke cases since they affect the lower and higher end of

the greyscale respectively. Histogram-based comparison is

Fig. 4. Classification flowchart.

therefore used to identify these two cases. In contrast, the

acute and normal cases are not so easily distinguishable from

their histograms. Wavelet energy-based texture information

is used for this discrimination. To summarise, our strategy is

to perform a 2-level classification as shown in Fig. 4. In the

first level, a given slice is classified as belonging to one of 3

classes: C1 chronic infarct, C2 Hemorrhage and C3 Normal

or acute infarct. In the second level, C3 is split into two

subclasses: C31 acute infarct and C32 normal. We will now

describe the details of the proposed algorithm.

The proposed algorithm has three main steps. In the first

step, the given slice is enhanced and denoised. Next, the line

of brain symmetry is determined and finally, the abnormal

slices are detected. Since infarct can occur in the nasal

cavity region (brain stem or cerebellum) these slices are also

considered for stroke detection.

A. Image enhancement and noise filtering

Since the dynamic range of the Hounsfield unit (HU)

values for CT images is very large (-1000 to +1000 HU),

the first task is to select the appropriate range of gray level

for extracting soft tissue regions. The relationship between

gray level (I(x, y)) and HU given as:

HU = I(x, y) + intercept (1)

where, the intercept value can be obtained from the meta

information available in the DICOM header of CT volume

data.

The histogram of a given slice consists of two major peaks

corresponding to the background and soft tissue pixels. Since

the HU values of the soft tissue are higher than that of the

background (air), the higher intensity peak will correspond to

the soft tissue region [12]. A windowing operation to stretch

the contrast is performed with the above peak value (P) as

the center and W (set to be 120 HU) as the width of the

window:

Inew(x, y) = 255 ∗

Ioriginal(x, y) − (P −
W
2

)

W
(2)

After windowing, noise removal is performed using

Wiener filtering to remove the graininess from the image.

A sample image and the result of the enhancement and the

denoising is shown in Fig. 6.

B. Rotation Correction and Detection of line of symmetry

Since our approach is to compare histograms of the two

hemispheres, it is necessary to correctly identify the line of

symmetry. The physical structure of the skull is used to detect

the rotation angle as well as the line of symmetry. The line
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Fig. 5. Histogram of the CT image in Fig. 6 (a).

Fig. 6. (a) Original image, (b)Enhanced (windowed) image

of symmetry ls is one that passes through the tip of the nose

and bisects the horizontal line lh passing roughly through

the middle of the slice. We correct for any rotation present

before extracting these lines. To find ls we first search a

set of slices (with high number of connected components)

around the nasal cavity region. A sub-region is identified

in these set of slices by locating the tip of the nose via a

simple raster scan. The sub region is of size 30x512 and its

horizontal projection profile is computed for every slice. The

troughs in the profiles are found in either direction starting

from the nose tip for each of the candidate slice. The slice

which shows the most steep curve is chosen to be appropriate

to detect and correct for rotation.

In the axial view, the nose appears as a hill with the tip

being the peak of the hill and the base being bounded by knee

points of the hill. In the absence of rotation, the line passing

through the tip of the nose should be orthogonal to the line

connecting the base of the nose. The knee points are easily

detected by determining the rate of change of the slope of

the nose boundary starting from the nose tip. The deviation

of the base line from the horizontal gives the rotation angle

which is used to perform a correction. This preceding step

can only correct for rotation in the x-y plane. It is possible

that the CT volume is also rotated in the axial direction which

will mean the plane of symmetry will not be perpendicular

to the x-y plane. Consequently, the lines of the symmetry for

each slice will not align. In order to address this problem,

we determine ls for each rotation-corrected slice as follows:

lh is of same width as the horizontal projection profile of

each slice and thus the required ls is the bisector of lh. A

sample slice image and the result of rotation correction is

shown in Fig. 7.

C. Detection of abnormal slices

The detection algorithm performs a 2-level classification

to identify abnormal and normal slices. Histogram features

are used in the first level while wavelet-based features are

used for the second level. Since the nasal slices have very

little soft tissue, they have to be handled with care. In our

approach, they are classified as normal in the first level and

passed to the second level for analysis.

Fig. 7. (a) original image with rotation (b) rotation corrected image with
the line of symmetry in red
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Fig. 8. Histograms of a hemisphere for (a) normal and (b) with an old
infarct cases.

The first step differentiates the encephalic slices into three

classes C1, C2 and C3 as described earlier, based on their

histogram features. The ls information is used to divide a

slice into two hemispheres and the histogram for the right and

left hemispheres are computed and compared for similarity.

The similarity metric used is the correlation coefficient which

is computed on a subsampled (by 5) version of the 2

histograms. Since only the low and high indexed bins are of

interest, the measure is computed only for those bins. If this

measure is below a threshold the corresponding bin number

is noted. If the bin number is low, the slice is classified as

belonging to C1 (see Fig. 8) and if the bin number is high

the slice is classified as a member of C2. If the measure

is below the threshold in both low and high indexed bins,

the implication is that both type of abnormalities present in

the slice. Therefore such slices are accorded membership in

both C1 and C2. All slices with correlation measure above

threshold are classified as belonging to C3.

In the second level of classification, the goal is to dif-

ferentiate between normal and acute infarct cases. His-

togram features are insufficient for this purpose as their

grey value distributions overlap. This can be seen from the

histograms shown in Fig. 9. Since the difference between

the distributions are subtle, a finer analysis is required. A

wavelet decomposition of the histograms is employed for this

analysis. Daubechies-4 wavelet decomposition up to 5 levels

are used to compute the energy distribution in the scale space.

The corresponding energy values of the two histograms are

compared using a simple difference of energy measure. If

the difference is above a threshold, the slice is classified as

belonging to C31. All other cases are classified as normal.
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Fig. 9. Histograms of a hemisphere for (a) normal and (b) acute infarct
cases.
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Fig. 10. Erroneous results: (a) False positive of normal (b) false positive
of infarct categories

IV. EXPERIMENTAL RESULTS

The performance of the method has been tested on a

dataset collected from a local hospital from two different

scanners: Siemens Emotion 6 and Definition CT scanners.

The dataset consists of volume CT data of 15 patients (6

normal and 9 abnormal - 6 infarct; 3 hemorrhagic) cases.

Number and thickness of slices vary across patients:18− 31
slices and 4.8 − 6 mm, respectively. In total, there are

347 slices belonging to four main categories: 223 normal,

40 chronic infarct, 49 acute infarct and 35 hemorrhagic.

Annotation for each slice of a CT volume was provided by

a senior radiologist.

The classification performance of the proposed method

was tested at slice and at patient (normal vs. abnormal

case) level. The performance figures are presented in terms

of precision (or positive prediction value) and recall (or

sensitivity). At the patient-level if any slice is found to have

an abnormality the entire volume is declared to be abnormal.

Table II shows that the algorithm has 100% recall and 90%

precision at the patient-level.

Table I presents the performance figures at the slice-level.

The average precision obtained for individual category is

92% and maximum (93.3%) for hemorrhagic category. The

average recall value is 90% and maximum (95.91%) for

acute stroke category. In normal category, false positives

were mainly due to mis-classification of slices at the bound-

ary (in the axial direction) of the stroke. It can be seen

from Fig. 10(a) that such slices do not show characteristics

of abnormality and hence are difficult to classify. False

negatives in the normal category arise due to a subtle

difference between normal and acute stroke categories as

seen in Fig. 10(b). Some regions of nasal cavity slices also

appear close to infarct type mainly due to randomness of

their histograms. The mis-classification rate can possibly be

reduced with a better characterization of individual category.

TABLE I

PERFORMANCE FIGURES AT SLICE-LEVEL.

Ground truth
Abnormal Normal

Algorithm
Abnormal 9 0
Normal 1 5

Recall 100%
Precision 90%

TABLE II

PERFORMANCE FIGURES AT PATIENT-LEVEL.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed an algorithm based on

contra-lateral symmetry to detect stroke affected slices in a

given CT volume. The key features of our algorithm are:

ability to detect all types stroke (acute, chronic infarcts and

hemorrhages) even if different types are present in the same

slice. The proposed approach is a unified one which helps

in building a stroke analysis system that can detect and

segment all types of stroke. The contra-lateral symmetry

condition that we have used fails when the same type of

stroke occurs symmetrically in both hemispheres. Such cases,

though rare, are currently not handled by our algorithm.

Initial results obtained on testing over 347 slices are very

encouraging. Most of the false positives in normal category

can be reduced by using the fact that strokes are usually

spatially continuous. Hence, if the imaging is done with

thinner slices, continuity across slices can be an indicator for

abnormality. As an alternative, it is possible to include some

form of spatial information in the histograms, which can help

detect symmetrically occurring strokes. Such information can

also help in the stroke segmentation task.
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