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Abstract— Quantitative analysis of the vascular architecture
of the retina can help in monitoring the effects of retinopathy
on the visual system. Retinopathy affects the blood vessels in the
retina through modification of the shape, width, tortuosity, and
the angle of insertion of the temporal arcade. Monitoring the
openness of the temporal arcade and changes with treatment
can facilitate improved diagnosis and optimized treatment. We
propose methods for the detection and parametric modeling of
the temporal arcade, including gradient operators and Gabor
functions to detect retinal vessels, and the Hough transform to
detect parabolic forms. Results obtained with 40 images of the
retina indicate accurate to acceptable results for 24 images and
partial fits of the parabolic models for 11 images.

I. INTRODUCTION

A. Retinopathy

Diabetes, hypertension, arteriosclerosis, and retinopathy of
prematurity (ROP) affect the structure of the blood vessels in
the retina by modifying their width, shape, and tortuosity [1],
[2], [3]. Some of the degenerating conditions of ROP asso-
ciated with posterior changes are straightening of the blood
vessels in the temporal arcade and a decrease in the angle of
insertion of the temporal arcade [4]. The recognition of low
levels of tortuosity and dilation is difficult for even expert
observers, as indicated by Freedman et al. [5]. Whereas
changes in tortuosity have been observed to be consistent
with the severity of the disease [6], [1], quantifying changes
to the width of the vessels can be difficult due to the fact
that such changes are comparable to the resolution of the
image [2]. Furthermore, changes to the width may not be
consistent with the severity of the disease [7]. These factors
justify the need for a simple and reliable system for early
detection of changes in fundus images of the retina leading to
pre-plus and plus disease, and ultimately ROP, in the form of
a semi-automated or automated computer program. Because
the diseases mentioned above change the angle of insertion
of the temporal arcade, the openness or aperture of the main
temporal arcade also changes. Consequently, the detection
of the main temporal arcade and quantitative analysis of its
openness could help in diagnosing and monitoring the stages
of retinopathy, as well as determining the effects of therapy.

B. Detection of the Temporal Arcade

The detection of the temporal arcade can help in the
localization of other features of the retina, such as the
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optic nerve head (ONH) and fovea [8], [9], [10], [11].
The temporal arcade, by itself, does not appear to have
been used for quantitative analysis of retinal vasculature. By
simple examination of retinal images, it can be seen that the
temporal arcade originates from the ONH and expands in a
parabolic pattern. The parabolic profile can be used to derive
an estimate of the openness of the temporal arcade.

Foracchia et al. [11] proposed a method for the detection
of the ONH by defining a directional model for the vessels,
assuming that the main vessels originate from the ONH and
extend in paths that can be geometrically modeled as parabo-
las. A directional model was defined using the parabolic
formulation and assuming that the preferred direction of the
vessels is tangential to the parabolas themselves. With the
model and data indicating the center points, direction, and
caliber of the vessels, by using a residual sum of squares
method, the parameters of the model were identified.

Using an estimate of the ONH location and a binarized
image of the vasculature, Tobin et al. [9] proposed to apply a
parabolic model to the statistical distribution of a set of points
given by a morphologically skeletonized vascular image to
find an estimate of the retinal raphe. A parabola of the form
ay2 = |x| was modified to accommodate for the shifted
vertex at the most likely ONH location and the angle of
rotation of the retinal raphe, β. The resulting model and the
skeletonized image were used with Marquardt’s least-squares
method to estimate the parameters a and β.

Using an active shape model (ASM) and defining a point
distribution model (PDM), Li and Chutatape [10] proposed
a method to detect the boundary of the ONH and the
main course of the blood vessels. Using ASM and principal
component analysis, the location of the ONH was estimated.
A modified ASM was used to extract the main course
of the blood vessels. Thirty landmark points on the main
course of the vessels were used to derive the PDM. The
Hough transform and linear least-squares fitting methods
were combined to estimate a parabolic model. The rotation
variable was allowed to vary from +45◦ to −45◦ and the
vertex coordinate was approximated at half of the radius of
the ONH nasal to the ONH so that only the variable a, the
aperture of the parabola, needed to be estimated.

Fleming et al. [8] proposed a method to extract the
temporal arcade by means of vessel enhancement and semi-
elliptical curve fitting using the generalized Hough transform
(GHT). First, the vessels were enhanced to get a magnitude
image and a phase image of the vascular architecture. As-
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suming that, having an edge map and knowing the orientation
of the arcade, a reference point can only be at one of a few
locations, the GHT was applied to a skeletonized image of
the vasculature. The Hough space dimension was set to be
five, with variables for inclination, horizontal axis length, left
or right opening, and the location of the center of the ellipse.
Anatomical restrictions were applied to the variables to limit
the number of semi-ellipses generated by the method. The
global maximum in the Hough space was selected to derive
the closest fit to the temporal arcade.

Because the temporal arcade can be geometrically mod-
eled as a parabola, we propose a form of the GHT that can be
used to detect the temporal arcade in a retinal fundus image.

II. METHODS

A. Preprocessing of Images

The proposed methods were tested with fundus images of
the retina from the Digital Retinal Images for Vessel Ex-
traction [12] (DRIVE) database, which contains 40 images.
Each image is of size 584× 565 pixels, with a field of view
of 45◦ and a spatial resolution of 20 μm per pixel. After
converting each pixel in a given image to a vector of color
components and normalizing each component (dividing by
255), the result was converted to the luminance component
Y , computed as Y = 0.299R + 0.587G + 0.114B, where
R, G, and B are the red, green, and blue components,
respectively, of the color image. The effective region of the
image was obtained by thresholding the luminance image
with a normalized threshold of 0.1. Artifacts present at the
edges were removed by applying morphological erosion with
a disk-shaped structuring element of diameter 10 pixels.
In order to avoid detection of the edges of the effective
region, the resulting image was extended beyond the limits
of its effective region as follows [13]: First, a four-pixel
neighborhood was used to identify the pixels at the outer
edge of the effective region. For each of the pixels identified,
the mean gray level was computed over all pixels in a 21×21
neighborhood that were also within the effective region. The
mean value was assigned to the corresponding pixel location
in the gray-scale image. The effective region was merged
with the outer edge pixels, forming an extended effective
region. The procedure was repeated 50 times, extending the
image by a ribbon of width 50 pixels.

B. Derivation of an Edge Map of the Retinal Vessels

The Sobel edge detector [14], [15] was used as one option
for the detection of retinal vessels. The Sobel operators for
the horizontal and vertical gradients, respectively, are

⎡
⎣ −1 −2 −1

0 0 0
1 2 1

⎤
⎦ ,

⎡
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−2 0 2
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⎤
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The combined gradient magnitude was obtained as
G(x, y) = [G2

x(x, y) + G2
y(x, y)]

1
2 , where Gx(x, y) and

Gy(x, y) are the horizontal and vertical components of the
gradient, respectively. An automatic threshold, provided by

the Sobel edge detection function in Matlab [16], was applied
to the gradient magnitude image to obtain a binary edge map.

As a second option to obtain a map of the retinal vessels,
the Gabor filter [13] was used. The Gabor filter is defined
by the standard deviation values of a Gaussian in the x
and y directions (σx and σy) and the frequency fo of the
modulating sinusoid as [17]
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cos(2πfox).

(2)
The value of σx was defined in relation to the average thick-
ness of the vessels to be detected, τ , as σx = τ/{2√2 ln 2}.
The value of fo was defined as fo = 1/τ . The parameter
σy was set as σy = 2 σx. A bank of 180 filters was created
by rotation of the basic Gabor filter specified above to span
the range [−90◦, 90◦] in steps of 1◦. A magnitude response
image was created by using the maximum value of the
responses of the 180 Gabor filters for each pixel. Only one
scale of τ = 16 pixels was used to emphasize the major
blood vessels, i.e., the temporal arcade. The magnitude image
was thresholded to obtain a binary image of the blood vessels
in two ways: (a) Otsu’s [18] method for optimal thresholding;
(b) Fixed thresholding by setting a fixed threshold of 0.01
of the normalized intensity.

After getting the binary image of vessels, the morphologi-
cal processes of skeletonization [14] and area open [19] were
applied to get a skeletonized image of the blood vessels, as
well as to clean the image by eliminating isolated pixels
and short line segments related to small blood vessels. The
skeletonization procedure uses a form of the erosion process
and leaves only lines of single-pixel thickness without al-
tering the structure of the objects. The structuring element
used was a disk of radius 3 pixels. The area open procedure
detects any segment of connected pixels having a specified
maximum number of pixels and removes them. The area
open procedure was also applied to the Sobel edge image to
eliminate small artifacts.

C. Hough Transform for the Detection of Parabolas

Hough [20] proposed a method for the detection of straight
lines in images. The Hough transform can be modified to
detect parametric curves such as circles and parabolas [15],
[21], [22], [23]. The general formula defining a parabola with
its directrix parallel to the y-axis and its symmetrical axis
parallel to the x-axis is

(y − yo)2 = 4a(x − xo), (3)

where (xo, yo) is the vertex of the parabola and the quantity
4a is known as the latus rectum. The value of a governs
the aperture of the parabola and indicates the direction of
the opening of the parabola; for a positive a value, the
parabola opens to the right. The parameters (xo, yo, a) define
the parameter space or the Hough space, represented by
an accumulator, A. For every non-zero pixel in the image
domain there exists a parabola in the Hough space for each
value of a; a single point in the Hough space defines a
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parabola in the image domain. The size of each (xo, yo)
plane in the Hough space was defined to be the same as
the size of the image (584 × 565 pixels). The value of a
is restricted by physiological limits on the arcade and the
size of the image. For the DRIVE database [12], the value
of a was translated to the range [25, 60]. In order not to
make the accumulator too large, only positive values of a
were defined. If an image had the temporal arcade opening
to the left, it was rotated by 180◦ so the arcade would open
to the right in the data used for the subsequent steps. For
each non-zero pixel in the given edge map, the parameter a
was computed for each (xo, yo) in the parameter space, and
the corresponding accumulator cell was incremented if the
value of a was within the specified range. The point in the
Hough space with the highest value was selected to obtain
the parameters (xo, yo, a) of the best-fitting parabolic model
of the temporal arcade.

III. RESULTS

The original version of image 14 from the DRIVE
database is shown in Fig. 1 (a). The preprocessed gray-
scale image is shown in Fig. 1 (b). The binary edge im-
age of the blood vessels obtained using the Sobel edge
operator is shown in Fig. 1 (c). The magnitude response
of the Gabor filters is shown in Fig. 1 (d). The magnitude
response was thresholded to get a binary image of the blood
vessels, expected to contain the temporal arcade and not
the minor vessels because of the large value of τ = 16
used. The skeletonized image, obtained from the thresholded
image, is shown in Fig. 1 (e). The skeletonized image
was cleaned using the area open procedure; the result is
shown in Fig. 1 (f). The vessel maps obtained from the
Sobel and Gabor approaches were analyzed using the Hough
transform. The Hough space plane for a = −60 is shown in
Fig. 1 (g), which contains the global maximum in this case.
The parabola with the detected vertex coordinates and the
value of a was drawn on the original image; the result is
shown in Fig. 1 (h). The results of parabolic fitting using the
fixed thresholding method applied to the results of Gabor
filtering of the 40 images of the DRIVE database indicated
three accurate fits, 21 acceptable fits, 11 partial fits, and five
unacceptable fits. An accurate fit is indicated by a parabola
that fits at least 90% of the temporal arcade and has its
vertex in, or close to, the ONH, as shown in Fig. 2 (a).
An acceptable fit indicates cases where more than 50% of
the arcade is fitted by the parabola, as in the case shown in
Fig. 2 (b). Cases where one part of the arcade agrees with
the parabolic model, but the rest does not, either due to a
non-parabolic form of the arcade or due to the model being
attracted by other blood vessels, are termed as partial fits; an
example is shown in Fig. 2 (c). Images with unacceptable
results were found to be non-standard images that are not
macula centered [24], as shown in Fig. 2 (d).

IV. DISCUSSION AND FUTURE WORK

The fixed thresholding method applied to the Gabor
magnitude response led to better results than automatic

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 1. (a) Image 14 of the DRIVE database (565 × 584 pixels). (b) The
preprocessed gray-scale image. (c) Result of edge detection using the
Sobel operators. (d) The Gabor magnitude response. (e) Skeletonized image
obtained from the result in (d). (f) The cleaned skeletonized image using
the area open procedure. (g) The Hough space for a = −60 including the
global maximum. (h) The original image with the best-fitting parabola.

thresholding of the same and the results of the Sobel edge
operators. The automatic thresholding procedure did not
remove the minor blood vessels to the same extent as the
fixed thresholding method. The skeletonized image obtained
from the result of fixed thresholding mostly contained the
main course of the blood vessels, i.e., the temporal arcade,
and is suitable for analysis in the Hough space. The Sobel
edge detector led to the representation of multiple parabolas
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in the Hough space because thick blood vessels have double
edges in the resulting binary image. A center-line or skeleton
image is better suited for analysis using the Hough transform
than an image with multiple edges for the object of interest.
Furthermore, because the temporal arcade does not always
follow a perfect parabolic path, the results of the Hough
transform may provide only a partial fit or an acceptable fit
in several cases. Small vessels left after thresholding may
affect the result of the Hough transform, especially if they
form parabolic patterns themselves.

(a) (b)

(c) (d)
Fig. 2. Examples of (a) an accurately fitted parabola, (b) an acceptable fit,
(c) a partially fitted parabola, and (d) an unacceptable fit.

Although the proposed methods have shown promising
potential, there are limitations that need to be addressed.
The Hough transform procedure developed in the present
work does not take into account any rotation that might
exist between the horizontal axis of the image and the retinal
raphe; this step will be incorporated in future works. Prior
knowledge of the location of the ONH, and hence the point of
convergence of the temporal arcade, could assist in delimiting
the range of search for the vertex of the parabolic model. An
algorithm to detect and analyze several local maxima in the
Hough space may lead to better results, because the global
maximum may not always provide the best-fitting parabola.
The results need to be evaluated by an expert: further work
will include objective comparison of the parabolic model
with the temporal arcade marked by an ophthalmologist.

V. CONCLUSION

The proposed methods have shown good results in the de-
tection of the temporal arcade in fundus images of the retina.
With further improvements in the accuracy of the models
derived, the methods should lead to improved diagnosis and
therapy of retinopathy.
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