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Abstract— The study of the molecular mechanisms involved
in neurite outgrowth and differentiation, requires essential
accurate and reproducible segmentation and quantification of
neuronal processes. The common method used in this study
is to detect and trace individual neurites, i.e. neurite tracing.
The challenge comes mainly from the morphological problem
in which these images contains ambiguities such as neurites
discontinuities and intensity differences. In our work, we
encounter a bigger challenge as the neurites in our images
have a higher density of neurites. In this paper, we present a
hybrid complex coherence–enhanced method for sharpening the
morphology of neurons from such images. Coherence-enhanced
diffusion (CED) is used to enhance the flowlike structures of
the neurites, while the imaginary part of the complex nonlinear
diffusion of the image cancels the appearance of ’clouds’. We
also describe an elementary method for estimating the density of
neuritis based on the obtained images. Our preliminary results
show that the proposed methodology is a step ahead toward an
effective neuronal morphology algorithm.

I. INTRODUCTION

The study of neurite growth is fascinating for obvious
reasons. It helps us to understand the most fundamental
’wirings’ of the human body. It also helps us to understand
various neurodegenerative diseases, such as Alzheimer’s
disease. Several methods to detect and trace neurites in-
dividually have been proposed based on vectorial tracking
[1], chromosomes tracing [2], retinal vasculature [3] and
multiscale feature analysis [4]. Before further analysis could
be done on the neurites images, firstly, we need to overcome
the ambiguities of the neurites images, i.e. neurites disconti-
nuities, neurites with difference intensity levels and ’clouds’
which appear in a closely clustered neurites, refer to Fig.
1. In the case of segmentation of the flow–like structures,
i.e. neurites discontinuities, proves to be a challenge. Some
images are of poor quality, such that it becomes necessary
to enhance indistinct and/or close interrupted lines [5].

In cellular biology the problem arises, for example, when
studying the axonal and dendritic outgrowth of cortical
neurons under the influence of different promoting and
inhibiting factors. Since a cell in culture grows approximately
in a single cell layer, these process are usually studied by
means of fluorescence microscopy. The images frequently
contain ambiguities regarding the branching or crossing of
neurites and the linking of fragmented neurite segments.
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Such deficiencies make it virtually impossible to develop
fully automatic tracing techniques for neurite tracing. This
is why biologist still resort to manual delineation which
is a time consuming process resulting in highly operator–
dependent segmentation [6]. Most of the work done in
regards of analyzing neurites images are done on images
with low density of neurites [7], [8] or only focusing on the
neurons [9]. Intense work are being carried out in modeling
the morphology of neurite outgrowth [10], [11]. For our
research however, the density of neurites in an image is of
interest. Hence, a pseudo–quantification of neurite density is
suggested.

In this paper we present a synthesis of two diffusion tech-
niques proposed by [5] and [12], i.e. coherence–enhanced
diffusion (CED) and complex nonlinear diffusion (CNLD).

II. MATERIAL AND METHODS

A. Neurite Image

The image of the neurites are of neurite networks created
by isolating and dissociating dorsal root ganglia from new-
born rats. Neurones were grown for up to 5 days and stained
for the neuronal marker Tubulin using a green secondary
fluorescence labeled antibody. The image was captured using
Olympus IX-70 fluorescence microscope.

Fig. 1 shows a high neurite density image. In this figure,
ambiguitites of neurite image are shown. The RGB image
processed using the CED to enhance its flow–like structures.
CNLD is then applied to visibly enhance the structures before
the density estimation is calculated.

B. Coherence–Enhanced Diffusion

Nonlinear diffusion filters which improves images with
flow–like structures have been discussed extensively in [13]
and have been further developed using vector–valued images
and presented in [5]. The structure tensor is applied in the dif-
fusion process because it allows both orientation estimation
and image structure analysis. While most nonlinear diffusion
process works on edge preserving ([14], [15]), the CED
employs an integration scale which ensures stable orientation
estimates and utilizing the difference of the eigenvalues of
the structure tensor as a coherence measure. The anisotropic
diffusion filtering make use of the information applying them
to the structure tensor.

In the non–vector valued image, the idea is that the
processed version of the image u(x, t) of an image f (x) with
a scale parameter t ≥ 0 as the solution of a diffusion equation

∂tu = div(D · ∇u) (1)
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with f as initial condition,

u(x, 0) = f (x) (2)

and reflecting the boundary conditions:

〈D∇u, n〉 = 0 (3)

Hereby the n denotes the outer normal and 〈, 〉 the usual
Euclidean scalar product.

The diffusion tensor D which is a definite 2x2 matrix,
steers the the diffusion process according to its eigenvalues
(how much diffusitivity) and eigenvector (directions of the
diffusitivity). The diffusion tensor is adapted to the evolving
image.

A common diffusion tensor for all channels is being used
to avoid the risk that a structure evolves at different locations
for different channels. The vector–valued diffusion filter has
the following structure (i = 1, ...,m),

∂tui = div(D · ∇ui) (4)

ui(x, 0) = fi(x) (5)

〈D∇ui, n〉 = 0 (6)

Since D should take into account information from all
channels, a natural choice would be to make it a function of
Jρ(∇uσ), the structure tensor for vector images. For enhanc-
ing coherence, the smoothing process should act along the
coherence direction and increase with coherence. D should
possess the same eigenvectors as the structure tensor. The
eigenvalues of D are chosen as

λ1 := α (7)

λ2 :=


α, if µ1 = µ2 ,

α + (1 − α) exp
−C

(µ1 − µ2)2 , else. (8)

with the threshold parameter, C > 0 and a small regu-
larization parameter, α ∈ (0, 1). λ2 is an increasing function
with respect to the coherence (µ1 −µ2)2. For a more detailed
explanation regarding analyzing the coherence, parameter
determination and selection, please refer to [5].

C. Complex Nonlinear Diffusion

This is a diffusion process with complex valued diffusion
coefficient for modeling the blurring process. It was inspired
by the free Schrödinger equations and is a generaliza-
tion of the real diffusion process. For small phase angles,
the linear process generates the Gaussian and Laplacian
pyramids (scale–spaces) simultaneously. This approach has
subsequently been widely used in low level vision tasks like
smoothing, segmentation and edge detection [12]. To avoid
confusion, for this section, image is denote as I.

Fig. 1. Ambiguities in neurite image. © Neurite discontinuities, 4 Neurites
with different intensities and ¤ ’Clouds’ appearing in a cluster of neurites

Fig. 2. Image after coherence–enhanced diffusion

Fig. 3. Binary image of the imaginary part of the complex nonlinear
diffusion.
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Fig. 4. Histogram of the binary image. The black pixels represents the
foreground which is the neurites and the white pixels is the background. The
size of the image is 1024x1280 pixels, ratio of foreground to the background
is 28.39%

(a)

(b)

Fig. 5. Spatial density of the neurites. (a) The grayscale of neurite image
after CED is divided into a 10x10 grid. Each grid shows a histogram
count on the higher end of the grayscale. (b) The spatial density map is
superimposed on the grayscale image of the neurites to locate which area
has a higher density than the other.

The the one dimensional case, linear scale–space equation
is given by:

It = c∆I, I|t=0 = I0, 0 < c ∈ R (9)

with a constant diffusion coefficient c = 1.
The following initial value problem is considered:

It = cIxx, t > 0, x ∈ R
I(x, 0) = I0 ∈ R, c, I ∈ C (10)

When c ∈ R there are two cases: for c > 0 the process
constitutes a well–posed forward diffusion, whereas for c <
0 an ill–posed inverse diffusion process is obtained. In the
general case the initial condition I0 is complex. In this paper
we discuss the particular case of real initial conditions, where
I0 is the original image.

In regard of (10), the complex fundamental solution h(x, t)
that satisfies the relation below is sought:

I(x, t) = I0 ∗ h(x, t) (11)

where ∗ denotes convolution. Letting the c coefficient in (10)
be c = reiθ, since there does not exist a stable fundamental
solution of the inverse diffusion process, restrict the analysis
to a positive real value of c, that is θ ∈ (− π2 , π2 ). Replacing
the real time variable t by the complex time τ = ct, yields
Iτ = Ixx, I(x, 0) = I0. This is identical in its form to
the linear real–valued diffusion equation. Its fundamental
solution, therefore, is in a Gaussian form. In order to satisfy
the initial condition I(x, 0) = I0 we require

(a)
∫ ∞
−∞ h(x, t → 0)dx = 1,

(b)
∫
|x|>ε |h(x, t → 0)|dx→ 0, (12)

where ε = ε(t), limt→0ε(t) = 0.
This leads to the following fundamental solution:

h(x, t) = Agσ(t)(x, t)eiα(x,t), (13)

where gσ(x, t) = 1√
2πσ(t)

e−x2/2σ2(t), and

A =
1√

cos θ
, α(x, t) =

x2 sin θ
4tr

− θ
2
, σ(t) =

√
2tr

cos θ
(14)

The changing values of theta can make a big impact on the
image processed with complex diffusion. As the theta value
increases, the image will sharpen more (sharpening property
increases) till the theta value reaches 180 degree, and the
sharpening property reduces (smoothing property increases)
from 181 to 360 degrees and the process continues. Please
refer to [16] for a more detailed explanation. The value of
theta used in this paper is as suggested by the author in [12].
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III. RESULT AND DISCUSSION
The described techniques were implemented using a tech-

nical computing software from Mathworks, USA. Only one
neurite image is presented here to demonstrate the workings
of the proposed method. The result of the CED is shown in
Fig. 2. The flow–like structures of the neurites with lesser
intensity level are enhanced and most neurites discontinuities
are also recovered.

From this image we made a spatial density map of the
neurites. A grayscale image of the CED image is divided
into 10x10 grid. For each grid, we calculate the number
of pixels located in the higher end of the gray scale. To
facilitate the visual comparison between the grayscale image
and the spatial density map, we have superimposed the image
together as seen in Fig.5. The lighter the color is, the higher
the density of the neurites are in the specific grid. Next, we
applied the CNLD, which yields a real and imaginary part
of the CED image. The imaginary part is our main interest
as it only shows the edges of the neurites. We convert the
imaginary part of the image into a binary image. From here,
fine structures which were hardly seen visually in the real
part of the CED image are visually clear, and ’clouds’ are
removed, revealing hidden neurites underneath it, refer Fig.3.
The density estimation of the neurites is shown by Fig.4.
Through the histogram of the binary neurite image we are
able to calculate the ratio between the neurites (black pixels)
and background (white pixels) and make an estimation of
neurites density.

We acknowledge that in enhancing and recovering the
flow–like structures, not all neurites discontinuities could
be recovered. This task could be achieved with a longer
CED process, however, on the expense of losing several fine
structures. Hence a compromise has to be made in choosing
the diffusion time. We also observe the level of intensity
increases in both neurites with low and high intensities.
The latter however is not desired. We also acknowledge the
presence of background structures which appears in between
encircling neurites which is visible in the binary image of
the complex neurite image. This naturally also affects the
density estimation in the histogram. This is also the reason
why the spatial density map was not based on the binary
image rather on the gray scale CED image.

IV. CONCLUSIONS AND FUTURE WORKS
This paper has shown a novel application of the hybrid

complex coherence–enhanced method in sharpening and
enhanced neurites morphology. We have shown that using the
CED, the image which contains a dense flow–like structures
and are closely located is enhanced. While incorporating the
CNLD, the edges of the structures are more visible. We also
presented a prefatory method to quantify the density of the
neurites objectively and spatially.

Further work is undergoing in equalizing the intensity
of the neurites and removing the background structures
affecting the estimation density calculation. Parameters used
in this method need to be further explored to make it accus-
tomed to neurite images and more robust. Overcoming these

drawbacks would not only produce a conclusive estimation of
the neurite density but also a neurite image with an enhanced
neurite morphology.
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