
  

  

Abstract—Color chromosome classification (karyotyping) 
allows simultaneous analysis of numerical and structural 
chromosome abnormalities. The success of the technique 
largely depends on the accuracy of pixel classification. In this 
paper we present a method for multichannel chromosome 
image classification based on support vector machines. First, 
the image is segmented using a multichannel watershed 
segmentation method. Classification of the pixels of the 
segmented regions using support vector machines is then 
employed. The method has been tested on images from normal 
cells, showing the improvement in classification accuracy by 
10.16% when compared to a Bayesian classifier. The increased 
classification improves the reliability of the M-FISH imaging 
technique in identifying subtle and cryptic chromosomal 
abnormalities for cancer diagnosis and genetic disorders 
research. 

I. INTRODUCTION 
HE 46 human chromosomes are the packages that hold 
the DNA in every cell [1]. They are arranged into 22 

pairs of similar, homologous chromosomes and two sex 
determinative chromosomes (XY: male and XX: female). 
Numerical or structural abnormalities of chromosomes, 
which result from an exchange of genetic material between 
two or more chromosomes, can lead to cancer [2] or other 
genetic diseases [3]. Usually, the process of determining 
these abnormalities, by a cytogeneticist, is realized by 
investigating a number of chromosome images. However, 
this is a time consuming and laborious procedure that often 
leads to errors. 

Multiplex Fluorescent In Situ hybridization [4,5] (M-
FISH) is a multichannel chromosome imaging approach that 
overcomes many of the previous limitations [6]. More 
specifically, it uses a number of fluorophores such that each 
chromosome is stained with a unique combination of the 
fluorophores. In this way each chromosome is easily 
identified by its color. For a normal cell, all the pixels in 
each chromosome should be represented with one identical 
color. On the other hand, for a cancerous cell, different 
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colors might show up in a chromosome as a result of the  

 
Fig. 1. An M-FISH image and a chromosome abnormality 
shown by two distinct colors on a chromosome. 
 

chromosomal rearrangements or the exchange of DNA 
materials between chromosomes. Therefore, by analyzing 
the  
color karyotype, geneticists can easily determine if any of 
the genetic material on the chromosomes has been lost or 
rearranged, and use it for the study of cancers and genetic 
disorders. An example of an M-FISH image is shown in Fig. 
1 and on the right of the image a chromosome abnormality is 
shown. From this multiple channel image, it is able to 
distinguish each human chromosome in a cell by means of a 
specific color labeling. 

Since the birth of the M-FISH technology, many attempts 
have been proposed that try to automate the process of 
assigning each chromosome to its class. The methods 
described in the literature can be classified into two 
categories: 
• Pixel based [7-10]: These methods either classify each 

pixel of the M-FISH image or create a binary mask of 
the DAPI image using edge detection algorithms, and 
classify each pixel of the mask. 

• Region based [11-12]: where first the M-FISH image is 
decomposed into a number of homogenous regions and 
then are classified to 1 - 24 chromosome classes. 

M-FISH imaging promises a rapid and high-resolution 
genetic diagnosis with the help of automated computer 
image analysis [13]. The reliability of this molecular 
diagnosis technique, however, has not reached the level of 
clinical use [14]. The technique largely depends on the 
accuracy of pixel classification from the multichannel FISH 
imaging data. This will become especially challenging when 
applying the technique to cancerous cells; where it is 
difficult to determine if the color change in a chromosome is 
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due to the classification error or due to the chromosomal 
anomalies. Therefore, a crucial step is to improve the pixel-
wise classification accuracy.  

In this paper we make use of a multichannel watershed 
based segmentation method in order to segment the image. 
Then we classify each pixel using Support Vector Machines. 
Our method consists of a number of steps [12]. First the 
image is segmented by computing the multichannel gradient 
magnitude and applying the watershed transform. From each 
region defined all the pixels are then classified. Our method 
is compared to a Bayes classifier [7]. This model assumes 
that each class of chromosomes follows a Gaussian normal 
distribution in the feature space, which might not be 
realistic. We introduce a more accurate model based on the 
support vector machines [20] and a significant improvement 
in the classification accuracy is reported. A flowchart of the 
proposed method is shown in Fig. 2. 
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Fig. 2: Flowchart of the proposed methodology. 

II. MATERIALS AND METHODS 

A. Multichannel Gradient computation 
In order to segment the multichannel chromosome image 

first we must compute the multichannel gradient magnitude. 
Instead of separately computing the scalar gradient for each 
channel DiZenzo [15] introduced a tensor gradient while 
Drewniok [16] extended this work to multispectral images. 
Suppose, an M-FISH 2 5( , ) :I x y ℜ → ℜ  since the M-FISH 
image consists of 5 image channels. Then each pixel of the 
image is represented by: 

[ ]1 2 5( , ) ( , ) ( , ) ( , ) TI x y I x y I x y I x y= K , (1) 

where ( , ), 1 5iI x y i≤ ≤  are the components (channels) of 
the M-FISH image.  

Let also the direction v  be defined by the angle ω : 

[ ]cos sin Tv ω ω= , (2) 
thus the directional derivative of the function ( , )I x y  is of 
the form: 
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where : 1 5x y
i i iI I I i⎡ ⎤∇ = ≤ ≤⎣ ⎦ , J  is the Jacobian matrix 

and x
iI  and y

iI  are the derivatives of the i th component in 
the x  and y  direction, respectively. 

The direction v  which corresponds to the maximum of 
the directional derivative ( , )I x y  is found, by maximizing 
the Euclidean norm: 

2 ( ) ( ) ( )T T TJ v J v J v v J J v⋅ = ⋅ ⋅ = . (4) 
The extrema of the quantity ( )T Tv J J v , are given by the 

eigenvalues of the matrix TJ J  [16].  

B. Minima Suppression and Watershed Analysis 
A common problem of the direct application of the 

watershed transform on the gradient image is the over-
segmentation. To overcome this problem a plethora of 
techniques have been proposed [17]. In our case we have 
used the grayscale reconstruction [18] of the multichannel 
gradient magnitude. Grayscale reconstruction reduces a 
number of unwanted minima, as it provides an intuitive 
selection scheme controlled by a single parameter. 

The next step of our method is the computation of the 
watershed transform [19]. The watershed transform is a 
powerful segmentation method which presents some 
advantages over other developed segmentation methods: 

1. The watershed lines form closed and connected 
regions, where edge based techniques usually define 
disconnected boundaries which need post-processing to 
produce closed regions. 

2. The watershed lines always correspond to obvious 
contours of objects which appear in the image. 

The output of the WT is a tessellation nT  of the image 
into its different catchment basins, each one characterized by 
a unique label: 

{ }1 2, , ,n nT T T T= K , (5) 
where n  is the number of the regions. 

Only the pixels belonging to the watershed lines are 
assigned a special label to distinguish them from the 
catchment basins. The application of the WT to the 
grayscale reconstructed multichannel gradient magnitude 
image is illustrated in Fig. 3. 
 

  
(a) (b) 

 

Fig. 3. M-FISH image segmentation. (a) Initial M-FISH 
image and (b) Watershed based segmentation. 
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C. Support Vector Machines 
It is considered as a state-of-the-art classifier for both 

linear and nonlinear classification. SVMs belong to the 
family of kernel based classifiers. SVMs implicitly map the 
data into the feature space where a hyperplane (decision 
boundary) separating the classes may exist. This implicit 
mapping is achieved with the use of kernels, which are 
functions that return the scalar product in the feature space 
by performing calculations in the data space.  

The simplest case is a linear SVM [20] trained to classify 
linearly separable data. Suppose a training data, 
{ }, , 1, ,i ix y i l∀ = K , where n

ix R∈ , { }1,1iy ∈ −  are the 

labels for the two classes and l  is the number of training 
data. The training dataset is set to be linearly separable if 
there exists a vector w  and a scalar b  such that the below 
inequalities are valid for all elements of the training set: 

1ix w b+ ≥ , (6) 
1ix w b+ ≤ − . (7) 

The points, for which the equalities in the above equations 
are satisfied and have the smallest distance to the decision 
boundary, are called support vectors. The distance between 
the two parallel hyperplanes on which the support vectors 
for the respective classes lie is called the margin. Thus, the 
SVM finds a decision boundary which maximizes the 
margin (Fig. 4). 
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Fig. 4: A hyperplane that maximizes the separating margin 
between two classes (indicated by data points marked by 
“■”s and “●”s). Support vectors lie on the boundary 
hyperplanes of the two classes. 
 

Finding the decision boundary, then it becomes a 
constrained optimization problem which must minimize 

2w  subject to the constraints (Eq. (6) and (7)) and is 
solved using Lagrange multipliers [21]. The general solution 
is given: 

( ) ,i i i
i

f x a y x x= ∑ , (8) 

where ia  the Lagrange multipliers. 

In the case of non-linear classification, kernels are used to 
map the data into a higher dimensional feature space in 
which linear classification may be possible. The general 
solution will be then of the form shown in Eq. (9). 
Depending on the choice of the kernel function, SVMs can 
provide both linear and non-linear classification: 

( ) ,i i i
i

f x a y K x x= ∑ . (9) 

TABLE I 
DIFFERENT TYPES OF KERNELS USED WITH SVMS 

Type Kernel 
Linear ( , ) T

i iK x x x x= , 
Polynomial ( , ) ( ) , 0T d

i iK x x x x rγ γ= + > , 
Radial Basis Function 
(RBF) 

2( , ) exp( ), 0i iK x x x xγ γ= − − > , 

where , rγ  and d  are kernel parameters.  
Finally, note that although the SVM classifiers described 

above are binary classifiers, they are easily combined to 
handle the multiclass case. A simple, effective combination 
trains N one-versus-rest classifiers for the N-class case and 
takes the class for a test point to be that corresponding to the 
largest positive distance [22]. In this implementation we 
constructed an RB–SVM by using an RBF as the kernel 
function.  

III. RESULTS 
We tested our method on twenty images sets from a 

public database of 200 hand segmented M-FISH image [23]. 
The database contains six-channel image sets recorded at 
different wavelengths. Each dataset includes a “ground 
truth” image for each M-FISH image in which each pixel is 
labeled according to the class to which it belongs. This 
image is labeled such that the gray level of each pixel is its 
class (chromosome) number. Background pixels are 0 and 
pixels in a region of overlap are -1. These twenty images are 
representative [24], and are selected from different probes 
and focal planes. An extensive study on the clinical 
feasibility when analyzing cancerous cells will be conducted 
in the future. 

In order to compare our methodology the widely used 
Bayesian classifier was also implemented [7]. Each pixel is 
represented by a 5-feature vector z  where each feature 
corresponds to the intensity of one of the 5-image channels. 
The classifier finds the class for which the a posteriori 
probability is maximized [21, 24]: 
Decide ic  if ( | ) ( | )i jP c z P c z> ,  j i∀ ≠ , (10) 

where ( | )iP c z  is the a posteriori probability, which 
represents the probability that the feature vector z  belongs 
to chromosome class , 1, , 24ic i = K , given the feature vector 
z . 

For training, we have randomly chosen two images [8,12] 
three times and the rest of the images were used for testing. 
Thus three different training sets A, B, and C were used. 
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Thus, there was no overlap between the training and testing 
data. Each set of the testing images was then classified with 
respect to each of the training datasets. The classification 
results obtained from the three trials were then averaged to 
obtain the final classification results for each test set. The 
classification results for the various classification schemes 
are shown in Table II. Fig. 5 presents the classification maps 
for the two classification schemes.  
 

TABLE II 
PERFORMANCE OF SVM VERSUS BAYES CLASSIFICATION 

Dataset Bayes SVM 
A 70.94 ± 6.81 80.20 ± 6.44 
B 67.41 ± 7.41 79.57 ± 6.59 
C 71.78 ± 7.41 80.83 ± 5.12 

Mean 70.04 80.20 
 

  
(a) (b) 

  
(c) (d) 

Fig. 5. M-FISH image classification. (a) M-FISH image, (b) 
Labeled classification map: a separate color was used to 
represent each chromosome class, (c) Bayes classification 
map [7], and (d) SVM classification map. 
 

IV. DISCUSSION 
We introduced an automatic method for the segmentation 

and classification of M-FISH chromosome images. The 
accuracy of the support vector machine classifier is superior 
to that of the widely used Bayesian [7,8,9,11]. We also 
introduced a novel segmentation method which \ utilizes 
both spectral and edge information.  
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