
Streaming Level Set Algorithm for 3D Segmentation of Confocal
Microscopy Images

Alexandre Gouaillard, Kishore Mosaliganti, Arnaud Gelas, Lydie Souhait, Nikolaus Obholzer and Sean Megason

Abstract— We present a high performance variant of the
popular geodesic active contours which are used for splitting
cell clusters in microscopy images. Previously, we implemented
a linear pipelined version that incorporates as many cues as pos-
sible into developing a suitable level-set speed function so that
an evolving contour exactly segments a cell/nuclei blob. We use
image gradients, distance maps, multiple channel information
and a shape model to drive the evolution. We also developed
a dedicated seeding strategy that uses the spatial coherency of
the data to generate an over complete set of seeds along with
a quality metric which is further used to sort out which seed
should be used for a given cell. However, the computational
performance of any level-set methodology is quite poor when
applied to thousands of 3D data-sets each containing thousands
of cells. Those data-sets are common in confocal microscopy.
In this work, we explore methods to stream the algorithm in
shared memory, multi-core environments. By partitioning the
input and output using spatial data structures we insure the
spatial coherency needed by our seeding algorithm as well as
improve drastically the speed without memory overhead. Our
results show speed-ups up to a factor of six.

I. INTRODUCTION

Researchers in embryogenesis and oncology, among oth-
ers, rely on automated segmentation of cells to understand
the complex processes of tissue morphogenesis. In our work,
we are attempting to recover entire lineages of zebrafish cells
during its embryonic development. From a zygotic single cell
stage, the embryo rapidly multiplies over a period 2 days
to become a multi-cellular organism with millions of cells.
Using different fluorescent markers to stain the nucleus and
the membrane, we obtain large 3D+ t multichannel datasets
of the embryo using multiphoton microscopy. A single 3D
dataset is acquired every 4 minutes and has pixel dimensions
of 1024× 1024× 100, pixel spacings of 0.2× 0.2× 1µm3,
file-size of 143MB, and contain > 1500 detected cells. The
lineage reconstruction involves segmenting (3D), tracking
(3D+t) and classifying cells based on their position, shape,
gene expression and observing their trajectories. From the
image analysis stand-point, these tasks involve developing
algorithms for cell profiling, counting, distribution statistics,
shape analysis, segmentation and tracking of cells.

Cells/nuclei segmentation is often the first step in any
quantitative analysis protocol. It involves uniquely identify-
ing fluorescent marked cells and organelles, such as nuclei,
that are spatially correlated but whose position, number,

Systems Biology Department, Harvard Medical School,
200 Longwood Avenue, Boston MA 02215, USA.
alexandre gouaillard@hms.harvard.edu

Fig. 1. Multiple cells in close contact and in the same field of view.

and geometry must be determined [1]. The problem is
complicated by individual variations in intensity, geometry,
relative orientation and overlapping boundaries (Fig. 1). In
microscopy Images, the nuclei/cells which are the fundamen-
tal biological entities of interest often appear as overlapping
or touching each other. Identifying each nucleus separately
in a biologically consistent fashion is non-trivial. While
some biochemical stains provide viable clues in the form of
sharp color-space gradients at the boundaries, others exhibit
a narrow neck at the site of overlap between two nuclei. We
implement an approach that elegantly incorporates available
cues and shapes into a viable segmentation pipeline [2]. We
use geodesic active contours incorporating shape priors in a
level-set framework to provide nuclei segmentations.

(a) (b) (c)

Fig. 3. (a) Multithreading with non separable output leads to higher
memory consumption and additional processing to merge the temporary
outputs from each thread into the final output. (b) Streaming allow to
decrease the memory consumption by processing sub regions of the data
at a time. (c) streaming and multithreading allow to process all data in
parallel with no memory overhead compared to single threaded processing,
but supposes that both input and output can be divided into independent
sub-regions.

3621

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE

(a) (b) (c) (d) (e) (f)

Fig. 2. (a) Confocal image showing nuclei of the zebrafish ear. (b) Extracted foreground (c) Gaussian correlation map showing convex regions and
suppressing non-convex ones. (d) Distance map image. (e) Seed locations. (f) Level-set segmentations.

Figure 2 provides an example of our single-threaded level-
set based cell segmentation algorithm. After filtering and
adaptive thresholding operations, the nuclei foreground is
detected in (b). The distance maps are then computed on the
foreground in (c), and in (d), we detect convex image regions.
By combining these image features in a linear manner, a
speed image is computed for level-set evolution. In order
to seed the level sets, we detect the maxima regions (seed
points) of the distance map and the convexity map (e).
The seed points are placed in a priority queue according
to a quality factor. Starting from the seed with the highest
priority, a level set function is initialized and evolved. Note
that during evolution, a level set function may occupy other
yet unprocessed seed points. This destroys any remaining
(lower priority) seed points which are removed from the
queue. Hence, we converge on a segmentation of the image
by running through all the seeds in the queue as shown in
(f).

Earlier, we mentioned that our large datasets contain
thousands of cells. By representing each cell with a single
level set function iteratively processing a single cell at a time
is computational expensive. Since a cell occupies a small
region of interest, it is possible to simultaneously process
more than one cell by splitting the input images into several
regions and combining the outputs in the end. furthermore
our seeds priority queue design supposes that all the seeds
corresponding to a spatial region are processed sequentially
according to their priority. However, there are problems when
cells lie across the splitting planes. Another significant factor
to be considered is that the individual threads work load need
to be balanced for maximum efficiency. The partioning needs
to be sensitive to the asymmetric spatial distributions of cells.
In this work, we explore methods to make the algorithm
parallel and multi-threaded by partitioning the input and
output using spatial data structures. Our results show speed-
ups up to a factor 6 in some cases, and 2.5 in our case. We
present in this paper all the results, as some reader might
have slightly different algorithms or environments where the
spatial constraint or memory constraint could be removed,
and/or the memory constraint is stronger than in our case (we
suppose the Image fits in memory), cases and environment
for which we provide faster solutions as a side product of
our research.

The rest of the paper is organized as follows. Section II
describes related work in speeding up the level set meth-
ods. We define our complete level-set streaming solution in

Section III. Results on segmenting the zebrafish ear from
confocal images are presented in the same section. Finally,
in Section IV, we provide a summary and describe our plans
for the future.

II. RELATED WORK

Multithreading refers to the process of running some code
concurrently. This kind of process take advantages of multi-
CPU or multi-core CPU (or both) machine that are ubiquitous
nowadays. Each thread share the same memory space and can
either exchange data or otherwise communicate through this
shared memory. This is in sharp opposition with clustering or
grid computing, that requires specific code to communicates
between processes or nodes , adding an extra layer of com-
plexity above the algorithm. In multithreading, concurrent
reading to the same address is not prone to error, and reading
operation are then thread-safe. However one must be extra
careful when modifying a shared address as the result of
concurrent modifications will depend on the order in which
threads will have had access to the address. Solutions exist to
lock the access to a shared memory address while one thread
is writing to it, but it can lead to degradation of performance
as other thread that would want to access the same address
would just be suspended meanwhile. If it is a small variable
and a quick write, the degradation can be acceptable. For
image processing algorithm, locking the output image to
write to it is an overkill.

All the image processing algorithms based on filtering
using a kernel are intrinsically streamable (see figure 3:b
and c, as each pixel of the output will be written only once
and independently. Most of the problem then comes from
the size of the kernel, that will require extension, or padding
the region of the input used locally in each thread to be able
to compute the output.

In our case, region of interest of cells can slightly overlap,
and two overlapping ROI were to be processed in two
different thread, we would have a race between the two
thread, the last one writing in the output overwriting the first
one. Moreover, the design of our seeding solution supposes
spatial coherence within a thread. One possible solution
would be to have a temporary output, of the same size as
the final output, for each thread as illustrated in 3:a. But as
we would like to run this algorithm in batch on a cluster, we
face a limited memory environment, and we cannot afford
the extra cost, especially as the images biologist acquire tend

3622

to grow faster than any cluster node memory. We aim at a
multithreaded, streamed solution as illustrated in Figure 3:c.

Most of the work on using level set for cell segmentation
is relatively new [3]–[5]. We provided implementation of
the corresponding algorithms for the ITK library [6], [7]. It
does not seems that anyone have proposed multithreading or
streaming versions of these algorithms.

III. METHOD AND RESULTS

We use a single time point of a dataset which contains
979 cells,as confirmed by both visual inspection and manual
segmentation by biologists. Those 979 cells generate 1564
seeds. We tried different multithreading and streaming so-
lutions on a windows XP 64 bits machine, with two quad
core xeon processors. The normal memory consumption of
the algorithm is roughly 600 MB.

The first row of the table I how the results of the original
algorithm.

We first used a naive multithreading solution, as illustrated
in 3:a. Each thread can read from the original, full, image
from memory. Seeds are sequentially fetched by each thread
and processed separately using the same original algorithm.
Finally each thread as a temporary output where it can writes,
allowing for the seeds optimization. It lead only to good
speed enhancement but provided poor segmentation results.
The second set of rows (separated by a line from the previous
one), shows the results in this case. We can see that almost
all the seeds are used, which leads to over segmentation.
Because two seeds that correspond to the same cell can
be processed by different thread independently, the priority
queue design can not be used at its full potential. The speed
improvement is obvious with a factor 6.8 when using 8 cores.
It is counterbalanced by the high number of seeds processed,
and the inferior quality of the segmentation which convinced
us not to use this solution in our case. It would be one of
our choice for an algorithm for which the memory is not
an issue, and which wouldn’t have spatial constraint on the
seeds.

We then decided to enforce spatial consistency by dividing
both input and output in regions of equal sizes as illustrated
in 3:c. The third set of rows contains the corresponding
results. We can see that we are converging toward the optimal
number of processed seeds (979), but it does not translate in
better performances. A the number of seeds in a given region
can greatly vary from one region to the other, there is a great
unbalance on the workload of each thread. Our experiments
show that in average on our datasets 37% of the time is
wasted waiting for other threads to finish. Additionally, cells
that lie across the boundaries of the splitting planes are
not well segmented as the level set evolution is constrained
within the region to enforce non overlapping output region
for each thread. This algorithm (with the solution proposed
later in this chapter for the problem of the boundary cells)
would be our solution of choice for algorithm that either
are spatially independent, separable, and/or have memory
limitation which would make streaming a must have. As all
the partitions of the original input have the same size, the

peek amount of memory is directly linked to the number of
partitions and to the number of thread used. This solution
allows for the design of an algorithm that would probe the
amount of memory on a computer and adapt itself to this
limit, transparently to the user.

Using binary spatial partitioning of the original image with
respect to the seeds, we achieve both spatial coherence and
load balancing. This method is perfect in a multithreaded
and streamed environment where the number of threads and
the number of partition are the same and where all the
image fits in memory. The fourth set of rows contains the
corresponding results. The results are really interesting, with
a much better handling of false positive seeds (the number
of seeds eventually processed are closer to 979), and a much
better efficiency as less time is spend by threads waiting for
others. Unfortunately, the quality of the result is still not at
the level of the original algorithm, mainly because of the
strong spatial constraint on the evolution of the level sets as
illustrated on figure 4.

After computing regions using BSP we traverse the struc-
ture to check for the seeds that lie across the boundary, take
them out of the multithreaded seed queues and put them
in a special queue that will be processed separately. This
queue will have access to the entire image and cannot be
multithreaded, resulting in a slight performance loss. The
fifth and lst set of rows illustrates the result. We made
the difference between the seeds that where processed in
the multithreaded queues and the boundary seeds processed
in a single threaded queue. We can see that there is no
performance increase above 4 threads, as the extra number of
thread available is almost entirely compensated by the fast
that there are many more splitting planes, and thus many
more boundary cells. This point of inflection, the number of
threads above which performance does not improve, is of
course dependent on your data. Our data-sets represent very
dense populations of cells. We believe other datasets, like
drosophila datasets for example, could scale up better, as the
cells are not so densely packed in 3D. This is our solution of
choice nevertheless, as we have the same high quality as the
original algorithm, more than twice faster (4 threads) with
no memory overhead.

IV. CONCLUSION AND FUTURE WORK

We provided here several multithreading solutions for
different classes of image processing algorithms. Different
hypothesis on input and output, as well as on the memory
consumption and speed enhancement can guide to user
to pick its solution of choice. We successfully designed
a multithreaded version of our algorithm that provide us
substantial speed improvement (x2.5) for the same quality
of segmentation with no memory overhead.

In a future work, we would like to investigate clustering
solution to run this algorithm on the 1,000+ time points of
our current datasets, and the 10,000 time points that datasets
produced by the end of the year may contain.

3623

Fig. 4. Top: all level sets evolution is constrained inside the regions, which
lead to clear under segmentation. Bottom: cells that lie across the boundaries
are processed separately leading to complete segmentation of all cells.

V. ACKNOWLEDGEMENTS

This work was funded by a grant from the NHGRI
(P50HG004071-02) to found the Center for in toto genomic
analysis of vertebrate development.

REFERENCES

[1] E. S. K. Khairy, E. Reynaud, “Detection of deformable objects in 3D
images using markov chain monte carlo and spherical harmonics,” in
MICCAI, 2008, pp. 1083–1091.

[2] K. Mosaliganti, L. Cooper, R. Sharp, R. Machiraju, G. Leone,
K. Huang, and J. Saltz, “Reconstruction of cellular biological structures
from optical microscopy data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 14, no. 4, pp. 863–876, 2008.

[3] A. Dufour, V. Shinin, S. Tajbakhsh, N. Guillen-Aghion, J. C. Olivo-
Marin, and C. Zimmer, “Segmenting and tracking fluorescent cells
in dynamic 3-d microscopy with coupled active surfaces,” Image
Processing, IEEE Transactions on, vol. 14, no. 9, pp. 1396–1410, 2005.

[4] T. Chan and L. Vese, “An active contour model without edges,” in
Scale-Space Theories in Computer Vision, 1999, pp. 141–151.

[5] L. Vese and T. Chan, “A multiphase level set framework for image seg-
mentation using the mumford and shah model,” International Journal
of Computer Vision, vol. 50, pp. 271–293, 2002.

Nb MT Seeds MT ST time cells S Mem
T cells (s) per s % (GB)
1 0 P.Q. - 979 1829 0.54 - 0.6
1 M Rand 979 - 1833 0.53 - 0.6
2 M Rand 1246 - 1226 1.02 91 0.7
4 M Rand 1398 - 741 1.89 86 0.9
8 M Rand 1488 - 438 3.40 80 1.4
1 S - 979 - 1850 0.53 - 0.6
2 S - 981 - 955 1.03 91 0.6
4 S - 986 - 711 1.39 86 0.6
8 S - 1011 - 430 2.35 80 0.6
1 S BSP 979 - 1772 0.55 - 0.6
2 S BSP 982 - 930 1.06 91 0.6
4 S BSP 990 - 525 1.89 79 0.6
8 S BSP 997 - 326 3.06 62 0.6
1 S BSP+ 979 0 1812 0.54 - 0.6
2 S BSP+ 883 96 998 0.98 82 0.6
4 S BSP+ 807 174 731 1.34 37 0.6
8 S BSP+ 699 284 716 1.37 2 0.6

TABLE I
TABLE OF RESULTS. FIRST COLUMN IS THE NUMBER OF THREADS USED.

SECOND COLUMN IS THE SEEDING PARTITIONING POLICY, PRIORITY

QUEUE (PQ), RANDOM SEQUENTIAL ACCESS TO THE QUEUE, SPATIAL

DIVISION, BINARY SPATIAL PARTITION, AND HYBRID BINARY SPATIAL

PARTITION WITH RESPECT FOR BOUNDARIES. THIRD AND FOURTH

COLUMNS ARE, THE NUMBER OF CELLS MULTITHREADED, AND SINGLE

THREADED, RESPECTIVELY. THE TOTAL RUNNING TIME, IN SECONDS,
FOLLOWS. THE LAST THREE COLUMNS ARE THE THROUGHPUT RATE IN

CELLS PER SECOND, THE EFFICIENCY OF DOUBLING THE NUMBER OF

THREADS, AND THE MEMORY FOOTPRINT.

[6] K. Mosaliganti, B. Smith, A. Gelas, A. Gouaillard, and S. Megason,
“Level set segmentation: Active contours without edges,” The Insight
Journal, 2008.

[7] ——, “Segmentation using coupled active surfaces,” The Insight Jour-
nal, 2008.

3624

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

