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Abstract— Left ventricular (LV) mass has several important
diagnostic and indicative implications. In this paper, a fast and
accurate technique for detection of inner and outer boundaries
of LV and, consequently, calculation of LV mass from apical 4-
chamber echocardiographic images is presented. For detection
of the inner boundary, a modified B-spline snake is proposed,
which relies merely on image intensity and obviates the need
for computationally-demanding image forces. The outer
boundary is then obtained using a Markov random fields model
in the neighborhood of the estimated inner border.
Experimental validation of the proposed technique
demonstrates remarkable improvement over conventional
algorithms.

I. INTRODUCTION

ALCULATION of LV mass from echocardiographic

images has several important diagnostic implications
[1]. Automation of this task, however, requires accurate
detection of inner (epicardial) and outer (endocardial)
boundaries of LV, which is mainly impeded by inherent
low-contrast and speckle noise in echocardiographic images,
and thereby has given rise to many algorithms [2]. For
example, using active contour algorithms, with B-spline
snake as a member, involves finding the epicardial boundary
at first and using the fitted contour as the initialization to
find the endocardial border [3, 4]. The basic idea of the B-
spline snake model is to define an inherently smooth, energy
minimizing curve that is driven towards desired image
features by external forces. This technique is prone to errors
on low-quality data [3]. Another successful approach to
address boundary detection is Markov random field (MRF)
model (possibly in combination with active contours) [2]. A
MRF is a probabilistic model of the elements of a
multidimensional random variable where the components
have only local interactions [5]. In practice, this family of
algorithms suffers from high computational complexity.

In this paper, with focus on apical 4-chamber
echocardiographic images, a fast and accurate algorithm for
detection of endocardial and epicardial boundaries and,
calculation of LV mass is presented. Endocardial boundary
is detected using a modified B-spline snake algorithm, which

avoids computationally expensive optimization. Epicardial
border is then found using MRF based labeling on a small
neighborhood of the estimated endocardium. Experimental
validation demonstrates improvement in speed over
conventional algorithms, while detecting the boundaries with
high accuracy. The rest of this paper is organized as follows.
Sections II and III describe a framework for detection of
inner and outer boundaries of LV, respectively. Section IV
focuses on LV mass calculation, and Section V is dedicated
to experimental validation and this paper concludes in
Section VI.

II. ENDOCARDIAL BOUNDARY DETECTION

In this section, an algorithm for detection of endocardial
boundary in echocardiographic images is developed.

A. Cubic B-spline Snake Model

In cubic B-spline snake, the commonly used B-spline
snake algorithm, the contour is represented by cubic B-
spline basis functions and few control points govern the
deformation of the contour [4, 6]. Cubic B-spline snake is
characterized by N control points Q, = [x,, y,], n =1:N
and N connected curve segments
g,(0) = [u,(8),v,(8)], n=1:N, where 0 < 6 < 1. Each
curve segment is a linear combination of four cubic
polynomials in 8, as indicated in (1).
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Cubic B-spline snake is now defined as r(8) =

YN _g.(8), where 0 < 0 < 1. Setting 8 = 0 in (1), yields
the so-called node points P,, n = 1: N, which are located on
the contour. Further, denoting the collection of control
points and node points by N X 2 matrices Q and P,
respectively, we have P = AQ, where A € R¥*V is shown [6]
to be:

This work was supported by K.N. Toosi University of Technology, 1/6 2/3 1/6 0 w 0 0 0
Tehran, Iran, and by RCSTIM, Tehran, Iran. M. Marsousi and A. Eftekhari, 0 1 /6 2 / 3 1 /6 0 0 0
are with the Department of Biomedical Engineering at K.N. Toosi . . . . . . . .
University (a.eftekhari@ee kntu.ac.ir). J. Alirezaie is with the Department A = . . . . ' y y y 2)
of Electrical and Computer Engineering at Ryerson University, Toronto, 0 0 0 0 - 1/6 2/3 1/6
ON, Canada. He is also with RCSTIM. A. Kocharian is with the Tehran 1/6 0 0 0 0 1/6 2/3
Univefsity of Medical Scienc.es. E. Shgrifahmadian is \yith Research Centre 2 /3 1 /6 0 0 0 0 1 /6
for Science and Technology in Medicine, Imam Hospital, Tehran, Iran. He
is also with Tehran University of Medical Sciences (TUMS), Tehran, Iran.
978-1-4244-3296-7/09/$25.00 ©2009 IEEE 3633



B. Estimating Parameters from Image Data

Due to the inherent smoothness and continuity [4, 6],
deformation of the contour in B-spline snake algorithm is
completely determined in interaction with external forces.
Generally speaking, conventional external forces, either lack
adequate capture range and ability to progress into boundary
concavities, or suffer from excessive computational cost, as
in the gradient vector flow (GVF) and similar forces [2]. In
the following, an efficient adaptive balloon force is
proposed, which relies on the so-called stopping factors for
accurate fitting into the endocardial boundary.

In order to calculate the displacement of each node point
P, in cubic B-spline snake algorithm, one should consider
the contribution of external forces on the four adjacent curve
segments [7]. Generally, this necessitates computationally
expensive optimization-based approach that requires
inversion of high-dimensional matrices [6, 7]. Following the
reasoning presented in [7], however, a geometrical point of
view is pursued here, which only considers a weighted
contribution of two adjacent curve segments. More
specifically, suppose each curve segment gt (8) is sampled
at M points gt,(m/M), m = 0: M — 1, where t denotes the
dependence on time. Suppose, also, that MN X 2 matrix F};
contains the balloon forces (with unit norm) at all sampled
points along the contour. To calculate the displacement of
P,, we first transmit the balloon forces on g, and g,,_, to P,,.
This is performed using a weighted sum of balloon forces,
which aims to weigh the contribution of sampled points
close to P,. In short, the proposed scheme transmits
weighted external forces associated with adjacent curve
segments to their common node point to determine the
displacement of the corresponding node. As demonstrated in
Section V, this simplified model, summarized in (3), proves
to be fast and reliable in practice.
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In (3), N X 2 matrix F}, stores the balloon forces on all
node points. Finally, displacement of nodes is determined in
proportion to the balloon force on the corresponding nodes:
APt = diag(b")Ft
AQt = AT1APt 4)
where diag(a), for a vector a, denotes the diagonal matrix A
with A(i,i) = a(i). The proportionality factors, stored in
bt € RV, are iteratively reduced from an initial scale-
dependent value (8,/27)1y to guarantee convergence to the
boundary:
bt =bt~t -3, whereb® = (5,/2")1y %)

in which, 1y = [1,...,1]T and r denotes the scale at which
the algorithm is applied (see Section II.B.4). Moreover,
§€ RN stores the associated reduction rates, dubbed
“stopping factors”. Calculation of § is described in the next
section.
1) Stopping Factors

As mentioned above, stopping factors determine the rate
at which balloon force vanish, thus guaranteeing appropriate
fitting into the boundaries. Here, § is defined as § = Ds,
where s = [s], ...,s}]T € RMY is obtained by concatenating
the vectors s, € RM. Therefore, §(n) is calculated as a
weighted sum of the entries of s, and S¢_1)moa x> Where
s, € RM merely estimates the proximity of the sampled
points along the nth curve segment g, to the boundary:

1[f(8n(0)) = T,]
S = U (©)

in which I[-] is the indicator function and f(0) gives the
image intensity at point o. Further, T, = 0.7fyqyn is the
“intensity threshold” associated with nth curve segment, and
fmaxn 1s the maximum intensity along the normal line at P,
within an appropriate range. To improve the computational
efficiency, stopping factors are calculated once at each scale
(except for new nodes, where corresponding intensity
thresholds are calculated upon insertion). This is justified
because deformation of g,, only slightly changes T,,.

2) Node Insertion Strategy

Sharp intensity variations, noise and artifacts necessitate
more than primitive distance-based node insertion strategy to
avoid progressing into gaps. In this paper, each curve
segment is checked for violation of the distance threshold Ty
at each iteration. A new node is inserted at the midpoint of
every “long” segment g,, if the corresponding intensity
threshold (defined in previous section) does no differ
largely from T, and T,,_;. This simple modification
effectively precludes progressing into gaps.

3) Automatic Contour Initialization

To obtain the initial seed point, a template formed by few
training images is matched with the image at the coarsest
resolution to reduce the effect of noise. Finally, initial node
points are inserted, equally spaced, on the perimeter of a

small circle centered at this seed point.
(1) Determine the initial contour (Section II.B.3).
(2) For resolutionsr = 1:3
a. Consider the r — 1th level of wavelet decomposition of the
original image.
b. (Re)calculate the stopping factors for all nodes (see Section
IL.B.1).
c. Store the balloon forces along the contour in Fj;.
d. Use (3) to calculate the normal components of balloon forces on
nodes, which is then stored in Ff,al, 1-
e. Calculate the displacement of nodes (and thereby evolution of
the contour) using (4).
f. Using the node insertion criterion, add enough number of nodes
to the contour (see Section I1.B.2).
g. If convergence is not achieved, go to step (c).
(3) Final contour is the estimated endocardial boundary.
Fig. 1. Final multiscale algorithm for endocardial boundary detection.
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4) Multi-Resolution Strategy

Employing a multi-resolution strategy generally increases
the robustness against noise and local minima and improves
the convergence speed of active contours [4]. Here,
Daubechies wavelet decomposition has been used to
construct a three layer image pyramid. Our algorithm is then
applied at the coarsest level, here r = 3. Upon convergence,
the solution is propagated to the next finer level (r = 2) as
an initial snake. This coarse-to-fine iterative strategy
continues until the finest level of the pyramid (the original
image) is reached. Our final multiscale algorithm for
endocardial boundary detection is summarized in Fig. 1.

III. EPICARDIAL BOUNDARY DETECTION

Detection of the outer boundary of LV is described in this
section. A Markov random field (MRF) based labeling is
developed as follows [5]. Consider two random fields X and
Y, where X = {X;,s € S}is the label field, and Y =
{Ys,s €S} is the field of observations. Here, each Y; €
{0: 255}, and each X € {e, = blood, e, = myocardium}.
Furthermore, the lattice S with #S sites s is defined as
follows. Starting at the estimated inner boundary, sites are
placed on R evenly-distributed rays eradiated from the seed
point obtained in Section II.B.3 (see Fig. 2.a). Now,
denoting the discrete probability P(X = x) by P(x) for
simplicity, the maximum a posteriori estimation of x is
obtained as:

X = argmax, P(y|x)P(x) @)

Markovian assumption on P(x) implies that the
conditional probability of a particular site s depends only on
its immediate neighbors N (s):

P(xs|xs, 8 #5) = P(x5|xsr,s' € N(s)) ®)

Corresponding neighborhood system is schematized in
Fig. 2.b. Similar to 2D MRF model in Cartesian coordinates,
the second-order neighborhood system is used for each site,
i.e. all doubleton sets of eight immediate neighbors are
considered. Then, noting that an MRF is completely
described by a Gibbs distribution [2], we may write:

P(x;) = 5-e "9, where U(x) = ¥ Zsencs) 6(xe, %) (9)
where §(+-) and Zy are the Kronecker delta function and
normalization factor , respectively. Now, it remains to
determine the conditional distribution P(y|x), which is
usually assumed to be Gaussian: P(y|x; =eg) =
N(.ueo,i ’ O-iz) and P(yslxs = 61) = N(ﬂel,i ’ aiz)- Here,
N (u,02) denotes the normal density with mean p and
variance ¢2. In addition, Ue,,i and U, ; denote the average
intensity of a site on the ith ray, located in the blood pool
and myocardium, respectively. These parameters are
experimentally set to poo ;i = 0.7 fyax,i> and phe, i = 1.3 fyin i
where fuygy; and fygy; are the maximum and minimum
intensities along the range of the ith ray, respectively.
Finally, the maximum a posteriori estimation of x is is
obtained as:
% = argmax, P(y|x)P(x) = argmin,(y — u,)? + U(x)
(10)

—al
(2 (b)
Fig. 2. (a) Sites in our problem. (b) Corresponding neighborhood system, in
which two sample sites and their neighbors are depicted by red and N-
labeled circles, respectively.

Slice # 13

Fig. 3. LV mass calculation based on inner and outer boundaries.

where the latter equality is obtained by taking natural
logarithm and ignoring the constants. Note that y, defined in
(9), determines the contribution of our prior knowledge in
the labeling process. To solve (10), instead of conventional
EM algorithm [5], a simpler and faster approach is pursued
which builds upon the fact that most of the sites belong to
myocardium. Starting at the sites with locally maximum
intensity as the initial set, at each iteration only immediate
neighbors of the set are processed and are added to the set
provided the posterior probability of belonging to
myocardium outweighs that of belonging to the blood pool.
This procedure continues until convergence.

IV. LV MASS CALCULATION

For LV mass calculation, first, the long axis in LV is
found by the algorithm presented in [4]. Then, LV is divided
into K slices along the long axis, as depicted in Fig. 3.
Clearly, intersection of y axis with the inner boundary in kth
slice generates two distances from the axis, namely 73 ;, and
Ti,i,- Similarly, 7y ,, and 7y ,, are associated with the outer
boundary. Assuming that radius of each boundary varies
linearly in the yz plane, the area of kth slice is found via
elementary calculus:

A = %[rk,ozz + Tho,Tkoy F Tieoy = Toip — TioipTioiy — 7"1(2,1'1]
an

Then, LV volume is calculated as V = h(XK_; Ay) and
LV mass is obtained as p;V, where h is the length of the
long axis and p; = 1.05 (gram/cm’) is the average density
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of the myocardium at end of diastole (maximum expansion
of heart).

V. EXPERIMENTS

In this section, the proposed framework for LV mass

calculation is validated through comprehensive experiments
on a database of 45 apical 4-chamber echocardiographic
images. Acquisition of images (as well as extraction of
boundaries and mass calculation for comparison) was
performed by an expert using a VIVID3 echocardiography
instrument manufactured by GE. Original images had a
depth of 14 Centimeters (equivalent to 400 pixels) scanning
over a 90° arc. Our software was written in MATLAB7 and
implemented on a computer with an Intel Core 2 Doe, 2.2
GHz processor. In addition, CPU time was used as a rough
measure of complexity for our algorithm. Furthermore,
accuracy of a detected boundary was defined as the
summation of all closed areas formed as a result of the
mismatch of the contour with reference boundary, divided
by the area of the reference boundary. Recall that the
reference boundary is provided by the expert.
As our first experiment, the proposed B-spline snake
algorithm for inner boundary detection was evaluated by
calculating the average accuracy of the obtained boundaries
in our database. Fig. 4 illustrates the output of the proposed
algorithm compared to manually extracted boundaries.
Using the experimentally set parameters, LV mass was
calculated for all images in the database and compared with
other conventional algorithms. As the reference for this
comparison, we used the LV mass calculated by the expert
(using the modified Simpson’s formula [4]). Results, as
reported in Table 1, demonstrate clear improvement in
computational complexity over conventional algorithms,
while producing excellent average accuracy. We note that, in
contrast to conventional MRF based techniques, proposed
framework is robust against high intensity speckle noise in
the blood pool. In addition, for successful boundary
detection, conventional active contour algorithms require
calculation of the computationally-demanding GVF (or
similar) forces. Since our algorithm is tailored for
echocardiographic images, this requirement is obviated in
the proposed framework, which is based merely on image
the proposed framework, which is based merely on image
intensities for contour evolution. LV mass was calculated for
all images in the database and compared with other
conventional algorithms. As the reference for this
comparison, we used the LV mass calculated by the expert
(using the modified Simpson’s formula [4]). Results, as
reported in Table 1, demonstrate clear improvement in
computational complexity over conventional algorithms,
while producing excellent average accuracy. We note that, in
contrast to conventional MRF based techniques, proposed
framework is robust against high intensity speckle noise in
the blood pool. In addition, for successful boundary
detection, conventional active contour algorithms require
calculation of the computationally-demanding GVF (or
similar) forces. Since our algorithm is tailored for
echocardiographic images, this requirement is obviated in

Fig. 4. Manually and automatically detected boundaries and the closed
areas formed as the result of the mismatch between two contours, for two
echo images. Images are cropped for better visualization.

Table 1. Average accuracy and computational cost of LV mass calculation
for several algorithms.

Method Elap(sseec:;."l)“lme Accuracy (%)
Mean Variance Mean Variance
MREF [5] 8.1 22 94.22 4.38
Snake & GVF [6] 5.3 3.5 90.56 6.01
B-snake & GVF [6] 37 1.2 95.43 323
Proposed Method 1.1 0.5 93.75 2.12

the proposed framework, which is based merely on image
intensities for contour evolution.

VI. CONCLUSIONS

In this paper, an accurate framework for LV boundary
detection and mass calculation was presented. Proposed
technique relies on a modified B-spline snake algorithm for
extraction of the inner boundary and employs an MRF
model for detecting the outer border. Experimental results
demonstrated that our method, while computationally
efficient and fast, achieves remarkable accuracy in boundary
detection and mass calculation.
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