
  

  

Abstract— Left ventricular (LV) mass has several important 
diagnostic and indicative implications. In this paper, a fast and 
accurate technique for detection of inner and outer boundaries 
of LV and, consequently, calculation of LV mass from apical 4-
chamber echocardiographic images is presented. For detection 
of the inner boundary, a modified B-spline snake is proposed, 
which relies merely on image intensity and obviates the need 
for computationally-demanding image forces. The outer 
boundary is then obtained using a Markov random fields model 
in the neighborhood of the estimated inner border. 
Experimental validation of the proposed technique 
demonstrates remarkable improvement over conventional 
algorithms.  

I. INTRODUCTION 
ALCULATION of LV mass from echocardiographic 
images has several important diagnostic implications 

[1]. Automation of this task, however, requires accurate 
detection of inner (epicardial) and outer (endocardial) 
boundaries of LV, which is mainly impeded by inherent 
low-contrast and speckle noise in echocardiographic images, 
and thereby has given rise to many algorithms [2]. For 
example, using active contour algorithms, with B-spline 
snake as a member, involves finding the epicardial boundary 
at first and using the fitted contour as the initialization to 
find the endocardial border [3, 4]. The basic idea of the B-
spline snake model is to define an inherently smooth, energy 
minimizing curve that is driven towards desired image 
features by external forces. This technique is prone to errors 
on low-quality data [3]. Another successful approach to 
address boundary detection is Markov random field (MRF) 
model (possibly in combination with active contours) [2]. A 
MRF is a probabilistic model of the elements of a 
multidimensional random variable where the components 
have only local interactions [5]. In practice, this family of 
algorithms suffers from high computational complexity.  

In this paper, with focus on apical 4-chamber 
echocardiographic images, a fast and accurate algorithm for 
detection of endocardial and epicardial boundaries and, 
calculation of LV mass is presented. Endocardial boundary 
is detected using a modified B-spline snake algorithm, which 
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avoids computationally expensive optimization. Epicardial 
border is then found using MRF based labeling on a small 
neighborhood of the estimated endocardium. Experimental 
validation demonstrates improvement in speed over 
conventional algorithms, while detecting the boundaries with 
high accuracy. The rest of this paper is organized as follows. 
Sections II and III describe a framework for detection of 
inner and outer boundaries of LV, respectively. Section IV 
focuses on LV mass calculation, and Section V is dedicated 
to experimental validation and this paper concludes in 
Section VI.  

II. ENDOCARDIAL BOUNDARY DETECTION 
In this section, an algorithm for detection of endocardial 

boundary in echocardiographic images is developed. 

A. Cubic B-spline Snake Model 
In cubic B-spline snake, the commonly used B-spline 

snake algorithm, the contour is represented by cubic B-
spline basis functions and few control points govern the 
deformation of the contour [4, 6]. Cubic B-spline snake is 
characterized by ܰ control points Q ൌ ሾݔ, ,ሿݕ ݊ ൌ 1: ܰ 
and ܰ connected curve segments 
gሺߠሻ ൌ ሾݑሺߠሻ, ݊   ,ሻሿߠሺݒ ൌ 1: ܰ, where 0  ߠ ൏ 1. Each 
curve segment is a linear combination of four cubic 
polynomials in ߠ, as indicated in (1).  
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Cubic B-spline snake is now defined as rሺߠሻ ൌ
∑ gሺߠሻே

ୀଵ , where 0  ߠ ൏ 1.  Setting ߠ ൌ 0 in (1), yields 
the so-called node points P, ݊ ൌ 1: ܰ, which are located on 
the contour. Further, denoting the collection of control 
points and node points by ܰ ൈ 2 matrices Q and P, 
respectively, we have P ൌ AQ, where A א Rேൈே is shown [6] 
to be: 
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B. Estimating Parameters from Image Data 
Due to the inherent smoothness and continuity [4, 6], 

deformation of the contour in B-spline snake algorithm is 
completely determined in interaction with external forces. 
Generally speaking, conventional external forces, either lack 
adequate capture range and ability to progress into boundary 
concavities, or suffer from excessive computational cost, as 
in the gradient vector flow (GVF) and similar forces [2]. In 
the following, an efficient adaptive balloon force is 
proposed, which relies on the so-called stopping factors for 
accurate fitting into the endocardial boundary.  

In order to calculate the displacement of each node point 
P in cubic B-spline snake algorithm, one should consider 
the contribution of external forces on the four adjacent curve 
segments [7]. Generally, this necessitates computationally 
expensive optimization-based approach that requires 
inversion of high-dimensional matrices [6, 7]. Following the 
reasoning presented in [7], however, a geometrical point of 
view is pursued here, which only considers a weighted 
contribution of two adjacent curve segments. More 
specifically, suppose each curve segment g

௧ ሺߠሻ is sampled 
at ܯ points g

௧ ሺ݉ ⁄ܯ ሻ, ݉ ൌ 0: ܯ െ 1, where ݐ denotes the 
dependence on time. Suppose, also, that ܰܯ ൈ 2 matrix F

௧  
contains the balloon forces (with unit norm) at all sampled 
points along the contour. To calculate the displacement of 
P, we first transmit the balloon forces on g and gିଵ to P. 
This is performed using a weighted sum of balloon forces, 
which aims to weigh the contribution of sampled points 
close to P. In short, the proposed scheme transmits 
weighted external forces associated with adjacent curve 
segments to their common node point to determine the 
displacement of the corresponding node. As demonstrated in 
Section V, this simplified model, summarized in (3), proves 
to be fast and reliable in practice.  
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In (3), ܰ ൈ 2 matrix F෨
௧  stores the balloon forces on all 

node points. Finally, displacement of nodes is determined in 
proportion to the balloon force on the corresponding nodes: 
ΔP௧ ൌ diagሺb௧ሻF෨

௧  
ΔQ௧ ൌ AିଵΔP௧                  (4) 
where diagሺaሻ, for a vector a, denotes the diagonal matrix A 
with Aሺ݅, ݅ሻ ൌ aሺ݅ሻ. The proportionality factors, stored in 
b௧ א Թே, are iteratively reduced from an initial scale-
dependent value ሺߚ/2ሻ1ே to guarantee convergence to the 
boundary:  
b௧ ൌ b௧ିଵ െ s ,   where b ൌ ሺߚ/2ሻ1ே         (5) 
 

in which, 1ே ൌ ሾ1, … ,1ሿT and ݎ denotes the scale at which 
the algorithm is applied (see Section II.B.4). Moreover, 
s א Թே stores the associated reduction rates, dubbed 
“stopping factors”. Calculation of s is described in the next 
section.  

1) Stopping Factors 
As mentioned above, stopping factors determine the rate 

at which balloon force vanish, thus guaranteeing appropriate 
fitting into the boundaries. Here, s is defined as s ൌ Ds, 
where s ൌ ሾsଵ

T, … , sே
T ሿT א Թெே is obtained by concatenating 

the vectors s א Թெ. Therefore, sሺ݊ሻ is calculated as a 
weighted sum of the entries of s and sሺିଵሻ୫୭ୢ ே, where 
s א Թெ merely estimates the proximity of the sampled 
points along the ݊th curve segment g to the boundary: 

s ൌ 
ሾ݂ሺgሺ0ሻሻܫ  ܶሿ

ڭ
ሾ݂ሺgሺெିଵܫ

ெ
ሻሻ  ܶሿ

                 (6) 

in which ܫሾ·ሿ is the indicator function and ݂ሺoሻ gives the 
image intensity at point o. Further, ܶ ൌ 0.7 ெ݂௫, is the 
“intensity threshold” associated with ݊th curve segment, and 

ெ݂௫, is the maximum intensity along the normal line at P 
within an appropriate range. To improve the computational 
efficiency, stopping factors are calculated once at each scale 
(except for new nodes, where corresponding intensity 
thresholds are calculated upon insertion). This is justified 
because deformation of g only slightly changes ܶ.  

2) Node Insertion Strategy 
Sharp intensity variations, noise and artifacts necessitate 

more than primitive distance-based node insertion strategy to 
avoid progressing into gaps. In this paper, each curve 
segment is checked for violation of the distance threshold ௗܶ 
at each iteration. A new node is inserted at the midpoint of 
every “long” segment g, if the corresponding intensity 
threshold (defined in previous section)  does  no  differ  
largely  from  ܶ  and   ܶିଵ. This simple modification 
effectively precludes progressing into gaps.  

3) Automatic Contour Initialization 
To obtain the initial seed point, a template formed by few 

training images is matched with the image at the coarsest 
resolution to reduce the effect of noise. Finally, initial node 
points are inserted, equally spaced, on the perimeter of a 
small circle centered at this seed point. 

(1) Determine the initial contour (Section II.B.3). 
(2) For resolutions ݎ ൌ 1: 3 

a. Consider the ݎ െ 1th level of wavelet decomposition of the 
original image. 

b. (Re)calculate the stopping factors for all nodes (see Section 
II.B.1). 

c. Store the balloon forces along the contour in F
௧ . 

d. Use (3) to calculate the normal components of balloon forces on 
nodes, which is then stored in F෨,ୄ

௧ .  
e. Calculate the displacement of nodes (and thereby evolution of 

the contour) using (4). 
f. Using the node insertion criterion, add enough number of nodes 

to the contour (see Section II.B.2). 
g. If convergence is not achieved, go to step (c).  

(3) Final contour is the estimated endocardial boundary. 
Fig. 1. Final multiscale algorithm for endocardial boundary detection. 
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of the myocardium at end of diastole (maximum expansion 
of heart). 

V. EXPERIMENTS 
In this section, the proposed framework for LV mass 

calculation is validated through comprehensive experiments 
on a database of 45 apical 4-chamber echocardiographic 
images. Acquisition of images (as well as extraction of 
boundaries and mass calculation for comparison) was 
performed by an expert using a VIVID3 echocardiography 
instrument manufactured by GE. Original images had a 
depth of 14 Centimeters (equivalent to 400 pixels) scanning 
over a 90° arc. Our software was written in MATLAB7 and 
implemented on a computer with an Intel Core 2 Doe, 2.2 
GHz processor. In addition, CPU time was used as a rough 
measure of complexity for our algorithm. Furthermore, 
accuracy of a detected boundary was defined as the 
summation of all closed areas formed as a result of the 
mismatch of the contour with reference boundary, divided 
by the area of the reference boundary. Recall that the 
reference boundary is provided by the expert.  
As our first experiment, the proposed B-spline snake 
algorithm for inner boundary detection was evaluated by 
calculating the average accuracy of the obtained boundaries 
in our database. Fig. 4 illustrates the output of the proposed 
algorithm compared to manually extracted boundaries.  
Using the experimentally set parameters, LV mass was 
calculated for all images in the database and compared with 
other conventional algorithms. As the reference for this 
comparison, we used the LV mass calculated by the expert 
(using the modified Simpson’s formula [4]). Results, as 
reported in Table 1, demonstrate clear improvement in 
computational complexity over conventional algorithms, 
while producing excellent average accuracy. We note that, in 
contrast to conventional MRF based techniques, proposed 
framework is robust against high intensity speckle noise in 
the blood pool. In addition, for successful boundary 
detection, conventional active contour algorithms require 
calculation of the computationally-demanding GVF (or 
similar) forces. Since our algorithm is tailored for 
echocardiographic images, this requirement is obviated in 
the proposed framework, which is based merely on image 
the proposed framework, which is based merely on image 
intensities for contour evolution. LV mass was calculated for 
all images in the database and compared with other 
conventional algorithms. As the reference for this 
comparison, we used the LV mass calculated by the expert  
(using the modified Simpson’s formula [4]). Results, as 
reported in Table 1, demonstrate clear improvement in 
computational complexity over conventional algorithms, 
while producing excellent average accuracy. We note that, in 
contrast to conventional MRF based techniques, proposed 
framework is robust against high intensity speckle noise in 
the blood pool. In addition, for successful boundary 
detection, conventional active contour algorithms require 
calculation of the computationally-demanding GVF (or 
similar) forces. Since our algorithm is tailored for 
echocardiographic images, this requirement is obviated in 

Fig. 4. Manually and automatically detected boundaries and the closed 
areas formed as the result of the mismatch between two contours, for two 
echo images. Images are cropped for better visualization. 
 

Table 1. Average accuracy and computational cost of LV mass calculation 
for several algorithms. 

Method 
Elapsed Time 

(Sec.) Accuracy (%) 

Mean Variance Mean Variance 

MRF [5] 8.1 2.2 94.22 4.38 
Snake & GVF [6] 5.3 3.5 90.56 6.01 

B-snake & GVF [6] 3.7 1.2 95.43 3.23 
Proposed Method 1.1 0.5 93.75 2.12 

the proposed framework, which is based merely on image 
intensities for contour evolution. 

VI. CONCLUSIONS 
In this paper, an accurate framework for LV boundary 

detection and mass calculation was presented. Proposed 
technique relies on a modified B-spline snake algorithm for 
extraction of the inner boundary and employs an MRF 
model for detecting the outer border. Experimental results 
demonstrated that our method, while computationally 
efficient and fast, achieves remarkable accuracy in boundary 
detection and mass calculation.  
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