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Abstract— Fitting geometric models to objects of interest in
images is one of the most classical problems studied in computer
vision field. As a result of its strong representation power and
flexibility, conic is one of the geometric primitives widely used
in a large number of image analysis applications, in practice.
As opposed to most existing conic fitting methods minimizing
the fitting error with the use of the second order polynomial
representation, in this paper, we propose a new method that
formulates the geometric fitting problem as a process of seeking
for the optimal mapping to a bivariate normal distribution
model. As a result, some critical disadvantages tightly coupled
with those methods following the routine polynomial repre-
sentation can be well overcome. To demonstrate this, a set
of carefully designed comparison experiments is conducted
to show the superiority of the newly proposed method to
a representative method using the polynomial representation.
Additionally, the practical effectiveness of the proposed method
is further manifested using a set of real image data with a
promising accuracy.

I. INTRODUCTION

One fundamental yet challenging problem in computer

vision is to use primitive models to represent image com-

ponents in 2D image spaces. Given the fact that a 2D image

is a perspective projection of a 3D view, a 2D abstract rep-

resentation is only useful when it preserves some geometric

properties of the objects in a 3D environment [1]. As conicity

is such a property preserving geometric features when pro-

jecting a 3D object to a 2D image, conic segments that could

be generated by the intersections of a plane with a double

cone are widely used in many computer vision applications,

such as the recognition of 3D objects [2], identification of

traffic signs [3], and tracking of biological cells [4]. Partially

due to the nonlinear nature of this problem [5], there still

remains much room for improvement despite the intensive

studies on this topic though.

A rich volume of studies on methods for fitting conics to

data can be found in literature [6],[7],[8],[9]. Most of these

algorithms describe conics with a second order polynomial

representation that follows:

f (Ω,Θ) = ΩT ·Θ = aω2
x +bωxωy +cω2

y +d ωx+eωy+ f = 0

(1)

where Θ =
(
a b c d e f

)T
is the coefficient vector

to be estimated and Ω =
(
ω2

x ωx ωy ω2
y ωx ωy 1

)T
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is a vector established with the x- and y-coordinate of a data

point (ωx,ωy) in a 2D space.

Given a set of points, the best estimates of parameters

under the metric of Least Squared Error (LSE) are those

that minimize the sum of squared algebraic distances:

Θ∗ = arg min
Θ∈S⊆R6

N

∑
i=1

f (Ωi,Θ) (2)

where S is a subset of R
6 that contains all possible solutions

to Θ.

Many ways of constructing the set S appear in the liter-

ature. One of the most common constraints is to normalize

the parameter vector to unit length, i.e., ‖Θ‖= 1, since any

scaled solution to (1) is still a solution. Other constraints

imposed on the set S include a+c = 1 and f = 1, as proposed

by Gander [6] and Rosin [8], respectively. More complicated

relationships across the coefficients have been investigated by

Bookstein [10], who proposes a2 + 1
2
b2 +c2 = 1. Fitzgibbon,

et al. [7] forces the resulting geometric shape to be ellipse-

specific by adding the discriminant b2− 4ac < 0, and turns

this inequality into an equivalent constraint in equation form

as: 4ac−b2 = 1.

Of all those studies on the conic fitting problem, ellipses

are often the conics of interest for object representation and

image analysis. Although the polynomial representation is

widely used for estimating the parameters of ellipses, several

notable disadvantages are noticed. First of all, as certain

constraints need to be stipulated to restrict to the intended

ellipse the resulting geometric shape of the best fitting,

e.g. limiting Θ to S ⊆ R
6, it is a constrained optimization

problem with a high computational complexity. Additionally,

each data sample, depending on its position relative to the

underlying ellipse, has different impact on the parameter

estimation with the error metric defined in (2). This is

also known as the “high-curvature” bias problem that is

particularly evident when data is noisy [5],[10]. Furthermore,

the geometric interpretation of the estimated parameters

is not straightforward. For the plotting purpose, estimated

parameters of the resulting ellipse need to be converted from

the polynomial representation using complicated formulae.

To address these problems, we propose a new ellipse fitting

mechanism that formulates the parameter estimation problem

as a searching process for an optimal mapping to a Gaussian

bivariate distribution model. In our experiments where data is

coupled with noise, this model based approach presents a ro-

bust fitting performance partially in that it combines the idea

of level set theory and parametric deformable model [11].

The performances of the new method are compared with

3637

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



Fig. 1. A series of iso-contours with elliptical shapes (in green) are
superimposed on a typical Gaussian bivariate probability density surface
in a 3D space.

those of an existing method representative of those methods

using the routine second order polynomial representation.

Furthermore, we apply our method to a set of real image

data to show its practical efficacy.

II. ELLIPTICAL FIT USING THE DEFORMABLE

NORMAL DISTRIBUTION MODEL

This new ellipse fitting method is enlightened by the fact

that the probability density surface of a Gaussian bivariate

distribution can be deemed as a composition of a set of

2D contours, i.e., the iso-contours, as illustrated in Fig. 1.

In general, these contours, shown in green in Fig. 1, are

elliptical in shape, provided that the variances associated

with the two random variables, i.e. x1 and x2, are not equal.

Additionally, all such contours have distinct scales that are

determined by their positions in “height” (i.e., along the

vertical axis).

This important fact suggests that, given an arbitrary set

of 2D points from a perfect underlying ellipse, we can

imagine that these points are dispersed along an iso-contour

on the probability density surface of a bivariate normal

distribution. Apparently, such a surface consists of a family

of 2D iso-contours of different scales. Deforming the surface

and moving vertically along its “height” direction, we can

find the ellipse that best fits to the given data based on a

given criterion, such as the minimization of the least-square

error. In this way, we formulate the geometrical model fitting

problem as a problem where we seek for the best mapping

relationship with a deformable statistical distribution model.

In probability theory, it is well known that a multivariate

Gaussian Probability Density Function (PDF) can be math-

ematically described as:

fX(x) =
1

2π |Σ|1/2
exp

(
−

1

2
(x− µ)T Σ−1 (x− µ)

)
(3)

where x is a multivariate vector: x =
(
x1 x2 · · · xℓ

)T
. In

our case, the number of variables is two, i.e., ℓ = 2.

It can be observed that all those elliptical contours sitting

on the bivariate normal density surface N(µ ,Σ) in a 3D

space share the same factor before the exponential term in

(3). As a result, an arbitrary elliptical contour can simply be

represented using the exponential term only:

(x− µ)T UΛ−1 UT (x− µ) = c2 (4)

where we have Σ = UΛUT ; Λ is a diagonal matrix and U

is a unitary matrix; c is a constant representing the distance

measured with the number of standard deviations from any

point on the ellipse to the mean of the distribution, i.e., the

Mahalanobis distance.

One immediate observation from (4) is that the location,

scale and shape information of an ellipse characterized by

(4) can now be readily represented by the mean µ , the

constant c, and the covariance matrix Σ in a straightforward

way. Let’s denote χ = {xi |xi =
(
xi1 xi2

)T
, i = 1,2, . . . ,N}

as coordinates of a set of data points to be fit with. The

resulting parameter estimates can be solved by taking the

estimation process discussed as follows.

(1) Scale: Given the representation in (4), the following

step of this new method is to find the best scale that enables

the resulting ellipse to get as close as possible to all the given

data samples. This can be formulated as an optimization

problem of minimizing a cost function established with the

Mean Squared Error (MSE) metric:

(c∗)2 = arg min
c2∈R+

J (c) (5)

where J (c) =
N

∑
i=1

(
(xi− µ)T Σ−1 (xi− µ)− c2

)2

.

The optimal solution c∗ minimizing J(c) can be attained

by setting to zero the derivative of J (c) with respect to c2.

With simple differential computations, the analytical solution

is as follows:

c∗ =

√
1

N

N

∑
i=1

(xi− µ)T Σ−1 (xi− µ) (6)

(2) Location: The ellipse centroid can also be shifted

towards its desired position by minimizing the following cost

function:

J (µ) = ‖f(µ)‖2 =
N

∑
i=1

fi (µ)2
(7)

where f(µ) =
[

f1(µ) f2(µ) · · · fN(µ)
]T

and fi(µ) is

defined as: fi (µ) = (xi− µ)T Σ−1 (xi− µ)− c2.

Since the cost function J (µ) is a nonlinear func-

tion of µ , Levenberg-Marquardt nonlinear optimization

method [12],[13],[14] can be used to update the centroid

location of the ellipse. Taking the first-order Taylor expan-

sion of the vector of functions f in the neighborhood of µ
and neglecting the second-order term, it becomes:

f(µ + δ µ)≈ f(µ)+ Jf (µ) δ µ (8)

where Jf(µ) is the Jacobian of the vector of functions f(µ)

and
−→
∇ fi(µ) is the gradient of the function fi(µ) at point µ :

Jf(µ) =
(
−→
∇ f1(µ) · · ·

−→
∇ fN(µ)

)T
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Substituting (8) into (7) further yields the following ap-

proximation:

J (µ + δ µ) = ‖f(µ + δ µ)‖2 ≈ ‖f(µ)+ Jf(µ)δ µ‖2
(9)

It is noticed that Levenberg-Marquardt optimization

method introduces a mixing term combining the steepest

descent and the quadratic approximation with a weight factor

η . When setting to zero the derivative of (9), we can find

the best δ µ by solving the following equation:
[
Jf

T (µ) Jf (µ)+ η I
]

δ µ =−Jf
T (µ) f(µ) (10)

where I is an identity matrix (of size 2×2 in our case).

(3) Shape: Similar to the ways the scale and centroid

location of an ellipse are estimated, we can deform the shape

of an ellipse in a way such that the following cost function

is minimized:

J
(
Σ−1

)
=

N

∑
i=1

∥∥∥(xi− µ)T Σ−1 (xi− µ)− c2
∥∥∥

2

(11)

As the covariance matrix Σ is symmetric, so is Σ−1, i.e.

Σ−1 =

(
γ1 γ2

γ2 γ3

)
. Substituting this expression into (11) and

setting its derivative to zero, the best shape update can be

solved as:

Γ∗ =
(
γ∗1 γ∗2 γ∗3

)
=

(
ΦΦT

)−1
Φ~I (12)

where Φ =




a2

1 a2
2 · · · a2

N

2a1b1 2a2b2 · · · 2aNbN

b2
1 b2

2 · · · b2
N



; ai and bi are

the two entries of xi−µ , i.e.
(
ai bi

)T
= xi−µ ;~I is a vector

consisting of N entries of 1.

Overall, this method keeps updating the scale, centroid,

and shape of an ellipse and is an analogy to the deformable

shape model that allows the active contour to adapt itself

to the desired position. In this case, the image force field

is determined by sample data while the internal energy is

derived from the ellipse model. An algorithmic description

of the proposed approach is summarized in Algorithm 1.

III. EXPERIMENTS AND RESULTS

To demonstrate our method’s resistance to high curvature

bias, we design a set of controlled experiments where data

points are sampled from conic segments with low curvatures

(cf. Fig. 2 (a)∼(d)). For a complete discussion on the effect

of diverse data distributions on fitting performance, we also

test on those fitting cases where data points are distributed

around high curvature segments (cf. Fig. 2 (e)∼(h)). Since

data is inevitably degraded by noise in reality, we introduce

to uncorrupted data an additive standard Gaussian noise

with η as its multiplicative weight. In addition, we compare

the resulting fitting performances with those of B2AC, a

representative method using the polynomial representation

proposed in [7]. When η = 0.05,0.1,0.15,and,0.2, fitting

results from both methods are presented in Fig. 2, along with

the underlying ellipses from which uncorrupted data points

are generated.

Algorithm 1 The ellipse fitting algorithm using a bivariate

normal distribution model.

Require: Given a dataset χ consisting of N pairs of data

coordinates: χ = {xi =
(
xi1 xi2

)T
, i = 1,2, . . . ,N}

• Estimate the initial mean vector and the covariance

matrix with the unbiased Maximum Likelihood Estimator

(MLE): µ(0)← 1
N

N

∑
i=1

xi; Σ(0)← 1
N−1

N

∑
i=1

(xi−µ)(xi−µ)T

• Initialize the step number n← 0, and the upper limit for

the number of iterations τ∗N
• For n = 0,1, · · · ,τ∗N −1 do

– Compute Σ−1(n); Compute c∗(n + 1) using (6).

– Update the ellipse location shift δ µ∗(n) by solving

(10); µ∗(n + 1)← µ∗(n)+ δ µ∗(n).

– For i = 1,2, · · · ,N: compute
(
ai bi

)T
= xi− µ and

construct matrix Φ.

– Compute Γ∗(n + 1) using (12).

end for

• Compute Σ∗← 1

γ1(n)γ3(n)−(γ2(n))2

(
γ3(n) −γ2(n)
−γ2(n) γ1(n)

)
.

• Diagonalize matrix Σ∗: Σ∗ = U∗Λ∗U∗T .

• Compute the estimated ellipse points with:

χ̂ = U∗
(

c∗(n)(Λ∗)
1
2

[
cosθ
sinθ

])
+ µ∗(n) where θ ∈ [0,2π)

Output: χ† = {x̂ j | x̂ j ∈ χ̂ , j = 1,2, · · · ,M}

It is noticed in Fig. 2 (a)∼(d) that no matter how strong the

noise level is, the fitting results from our proposed method

are more consistent to the underlying true ellipses and present

better stability as compared to those of B2AC. Unlike B2AC,

our method is much less subject to the high curvature bias

that results in the increasing deviation of fitting results from

high curvature sections as the degree of noise gets larger.

When noisy data is sampled from conic segments with high

curvature in Fig. 2 (e)∼(h), our new method and B2AC

become to have similar fitting behaviors.

To evaluate the fitting results in a quantitative manner, a

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. When data (blue circle) close to low and high curvature sections
of an ellipse (red dash) is coupled with additive Gaussian noise with η =
0.05,0.1,0.15,and ,0.2, fitting results produced by our method (black solid)
and B2AC (green solid) are compared in (a)∼(d), and (e)∼(h), respectively.
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TABLE I

COMPARISONS OF ζ ’S FOR EXPERIMENTS IN FIG. 2 ARE PRESENTED.

Data from low curvature Data from high curvature

Noise Strength B2AC Our Method B2AC Our Method

η = 0.05 0.1038 0.0892 0.1046 0.1035

η = 0.10 0.5430 0.4118 0.3276 0.3027

η = 0.15 1.0302 0.7275 0.7111 0.7013

η = 0.20 1.9022 1.2667 1.6231 1.5484

fitting error metric named as the Root of Sum of Squared

sample-to-ellipse Orthogonal Distance (RSSOD) is defined

as: ζ =

√
1
N

N

∑
i=1
‖xi− x̂i‖2, where x̂i is the nearest point on

the fitted ellipse to the data point xi and N is the total number

of fitting points to fit an ellipse with. The resulting fitting

errors associated with experiments in Fig. 2 are presented in

Table I for both methods.

To validate the efficacy of the proposed fitting algorithm

for practical applications, we apply it to a data set consisting

of 69 Optical Coherent Tomography (OCT) images of cross-

sections of coronary artery stents with resolution of 500×
500 in pixels. As a coronary artery stent is an expandable

scaffold placed inside the lumina of a narrowed coronary

artery for maintaining sufficient flow of heart-sustaining

blood, its deformed shape, originally being circular, can be

adequately represented by an ellipse under the pressure from

blood vessels. Due to the nature of this imaging modality, the

resulting images are often considerably degraded with noise

and artifacts so that only few joint segments of stent profiles

are captured. As a result, fitting an ellipse to detected stent

segments can help characterize the original stent shapes and

strut positions, and facilitates cardiologists visually assessing

the appropriateness of the stent placement in the coronary

artery after an implantation surgery. Additionally, it can also

help cardiologists detect those cases where coronary arteries

with implanted stents become narrow again, due to the

fibrotic tissues built up on stent surfaces. Some typical fitting

results are shown in Fig. 3 where yellow circles represent

centroids of stent segments longer than 5 pixels detected by

Fig. 3. A set of stent fitting results are presented. Top row: original OCT
images of stents in coronary arteries; Bottom row: recovered stent profiles
(green lines) from centroids of detected stent segments (yellow circles) by
our ellipse fitting method.

a steerable filter for finding local ridges [15].

The mean and standard deviation of the resulting ζ ’s

associated with the 69 testing images are 3.15 and 1.53.

Additionally, we also calculate the ensemble ζ of all the 69

images as a whole, i.e. N being equal to the total number of

fitting points from these 69 images. The resulting aggregated

ζ is 3.65. Given the fact that all these stent OCT images

are of size 500× 500 in pixels and of pixel resolution

10∼20 in microns, the computed ζ values are considered

adequately small for satisfying the accuracy requirement of

this application.

IV. CONCLUSIONS

In this paper, we formulate the optimal conic fitting

problem with the use of a deformable bivariate normal

distribution model. In our experiments, the proposed method

presents both better fitting stability and higher resistance to

the high curvature bias problem than a classical method fol-

lowing the routine second order polynomial representation.

As a result, the new fitting method produces better fitting

accuracies. Furthermore, we validate the practical efficacy of

this method by successfully applying it to identifying profiles

of coronary artery stents in a large set of OCT images with

satisfying performances.
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