
  

  

Abstract— Clinical Histopathology is based on the analysis of 
immunohistochemistry (IHC) stained tissue images. Selection of 
antibodies for detecting the presence, type, and grade of 
cancerous tissue has a great influence on the diagnostic 
potential of IHC tests. Automated evaluation methods for tissue 
microarrays applied to many combinations of antibody and 
tissue type can speed development of new clinical assays. We 
present an automatic method that successfully quantifies stain 
intensity, fraction of cells stained and sub-cellular location of 
staining in tissue microarray images. The method combines an 
opponent color preprocessor and a novel statistical approach 
for identifying brown and blue staining, followed by multilevel 
morphological processing. We verify the capability of our 
method by comparing the results to manually annotated image 
databases. We also demonstrate cross-tissue robustness using 
two clinical case study data.    

I. INTRODUCTION 
Antibody-based proteomics enables systematic 

exploration of the human proteome through analysis and 
quantification of cellular responses to specific antibodies. 
One such proteome database, the Human Protein Atlas 
(HPA) [1,2] contains thousands of antibody-stained tissue 
cross-section images. This database is a valuable resource 
because the images are manually annotated and curated by 
the human experts -- pathologists. For users who have new 
tissue images stained with disease biomarker candidates, a 
computer-based automatic processing system benchmarked 
to these human annotated images would be truly beneficial. 
Additionally, an automated, benchmarked system would 
enable users who have no local access to pathologists to 
conduct antibody-based proteome studies and compare with 
existing manually annotated HPA database images. 

In this work, we demonstrate algorithms that 
automatically classify HPA tissue microarray (TMA) images 
by stain intensity, fraction of cells stained, and sub-cellular 
stain location using measures obtained at multiple levels: 
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pixel, cell / sub-cell, and image. While previous work has 
focused on either cell micro-arrays [3] or, if using TMAs, on 
sub-cellular pattern recognition [4,5], we calculate overall 
staining measures directly comparable to those provided by 
pathologists.   

We verify the capability of our automatic method by 
comparing with existing HPA database annotations. The 
similarity of results produced by our method combined with 
the fact that a computer-based system is faster and more 
reproducible (i.e. less subject to variation caused by different 
human curators) makes our work a promising platform for 
future TMA IHC quantification guidelines. 
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Fig. 1.  A. HSI Simple classifier. B. Multilevel classification model flow 
diagram. The end results of the classification process are produced in the 
lower three blocks: total % cells stained, stain strength, and overall sub-
cellular stain location. 

II. SIMPLE CLASSIFICATION MODEL 
Of the three image annotations tested in this paper, stain 

intensity was the simplest. We first developed a simple stain 
intensity classifier using standard image processing 
techniques. This classifier used the Hue and Intensity 
channels of the HSI color space to categorize pixels into 5 
classes: white, light blue, dark blue, light brown, and dark 
brown. We selected two features: percent of light brown 
pixels and percent of dark brown pixels (of non-white 
pixels). The HPA image database has good consistency in 
contrast and high image quality, so we used basic thresholds 
selected using 54 training images to classify the images.  

Our first classifier achieved 43.5% accuracy on the 210-
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image head and neck cancer tissue database and 68% 
accuracy on the 91-image prostate cancer database. These 
results reflect that this simple classifier poorly models the 
process used by a pathologist to grade the image. To 
improve these results, we developed a multilevel 
classification model to use sub-cellular region identification 
in addition to pixel-level classification. 

III. MULTILEVEL CLASSIFICATION MODEL 

A. System Overview 
Fig. 1 compares the design of the naïve classifier with the 

multilevel classifier. Pixel-level classification occurs first, 
followed by cell and sub-cellular segmentation, and finally 
image-level processing and classification.  At each level, 
features are computed which feed into the image-level 
classification. Training of this system was done using 400 
randomly-selected images from head and neck cancer 
tissues. None of the original 210 head and neck cancer or 91 
prostate cancer test images were used in training. 

B. Pixel Level Processing 
1) Color 

For pixel color classification, we extract a set of HPA 
training images for each of the four image strength classes 
annotated in the HPA (strong, moderate, weak, negative). 
We transform the pixels in each training image from the 
standard red-green-blue (rgb) color space into a 2-
dimensional opponent color space [6] (rg, by) using the 
following equations: 

rg = red – green 
by = ½ (red + green) – blue 

 
We chose this color space because it closely represents the 

way the human vision system experiences color [7], a matter 
of importance since human pathologists annotated our HPA 
TMA training images. For comparison, we tested the pixel 
classification described in Section II.B.3 using a 2-
dimensional color space derived using Principal Component 
Analysis (PCA) in addition to the (rg, by) color space.  

 
2) Intensity 

The 2-dimensional color transform described above does 
not include an intensity component. This characteristic of the 
transform is advantageous when differentiating solely on 
hue. Hematoxylin stains nuclei dark blue while cytoplasmic 
staining may range from light to dark. The diaminobenzidine 
(DAB) staining also has a wide intensity range. 

We use the achromatic pixel value Y, from the YIQ color 
space [6], for our intensity component since it is available as 
the MATLAB rgb to grayscale intensity conversion.  

Y Intensity = 0.2989*red + 0.5870*green + 0.1140*blue 
 

The resulting intensity ranges from 0 – 255 with grayscale 
white having a value of 255, and grayscale black a value of 
0. The darker pixels then have lower grayscale intensities. 

 

3) Pixel Classification 
For pixel color classification, we form a nonparametric 

estimate of the 2-dimensional conditional probability density 
function for each of the four image strength classes by 
summing integer-binned 2-dimensional (rg, by) histograms 
of the training images. The maximum likelihood estimate of 
the strength class for each (rg, by) integer pair, , is then 
obtained using   

 
where x is the observed (rg, by) integer pair, Θ is the 
strength class (strong or negative), and f(x|Θ) is the 
corresponding probability density function estimate. 

We use only images classified as negative or strong to 
train the pixel classifier, because moderate and weak images 
contain a complex mixture of brown and blue pixels, while 
strong and negative are dominated by either blue or brown. 
Fig 2 shows the RG-BY classifier used to distinguish 
between brown and blue pixels.  

 
Fig. 2.  Pixels classified as strong (blue), and negative (yellow), in the 
(rg,by) color space. The strong pixel region corresponds to brown pixels. 
The negative pixel region contains blue pixels.   

 
We select fixed Y intensity thresholds based on visual 

inspection of a subset of the training images. These are 160 
for brown and 142 for blue. Fig. 3 compares portions of 
original prostate cancer TMA images (top row) and the 
corresponding classified pixel images (bottom).  
 

 
Fig. 3.  Top Row:  Snippets of HPA IHC stained prostate TMA images 
      Bottom Row: Pixels classified dark blue (green) and dark brown (red) 
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C. Sub-cellular Processing 
1) Nuclei Segmentation 

After transforming the pixels in the test images to (rg, by, 
intensity) space, we locate brown-stained nuclei by 
extracting brown pixels from the image, clustering dark 
brown pixels into “blobs”, and filtering the blobs by area and 
aspect ratio to produce a set of “nuclei-like” objects. A 
parallel procedure is performed to locate the hematoxylin-
stained blue nuclei. Fig. 4 shows the brown and blue nuclei 
detected for one of the head and neck cancer tissue samples. 

 

 
Fig. 4.  Segmented blue (left) and brown (right) nuclei overlaid on image 
 

2) Cell Identification 
We then sample a cell-shaped and cell-sized region 

around each blue nucleus to obtain an overall estimate of the 
number and intensity of brown stained cytoplasmic and 
membranous pixels, as well as the number of blue nuclei 
with brown cytoplasmic/membranous stain in the image. We 
collect all the pixels within a fixed width border around the 
blue nuclei for cell sampling.  

We do not address overlapping cells or clusters in this 
work; we assume these effects will be statistically similar for 
the various tissue samples so that the overall image 
classifications will be correct for most images.  We do not 
observe overlapping nuclei in the test or training images. 

D. Image Level Processing 
1) Percent Staining 
The percent of cells stained is calculated as follows from 

the number of nuclei stained brown, the number of blue 
nuclei with adjacent brown cytoplasmic or membranous 
stain, and the total number of blue stained nuclei: 

% stain = (Nbrown_nuclei + Nblue_nuclei_w_brown_cyt) /  Ntotal_nuclei 
 

2) Sub-cellular Localization 
The sub-cellular localization of staining is determined to 

be either nuclear or cytoplasmic/membranous by comparing 
the number and intensity of brown nuclei pixels to the 
number and intensity of brown cytoplasmic and 
membranous pixels.    

 
3) Stain Strength Classification 

a) Features used for image strength classification 
Six features are used: 

• Number of brown nuclei,  
• Average brown nuclei intensity, 

• Number of blue nuclei with adjacent cytoplasmic 
or membranous brown stain,  

• Average intensity of cytoplasmic and 
membranous brown stain,  

• Total number of brown stained pixels in the 
image, and 

• Average intensity of brown image pixels. 
These six features are normalized, and their sum is used to 

classify the image stain strength as strong, moderate, weak, 
or negative. 

b) Composite Scoring Method 
The composite scoring method compares the features 

extracted from the test image to the statistics of the features 
for a training set of images as follows: 
1. Midpoints between the means of adjacent classes (e.g. 

strong and moderate) are computed for each feature 
from the training data.  

2. Incoming test image features are computed, compared 
to the midpoints, and assigned a score from 0 - 4 based 
on variance normalized distance from the closest mean.   

3. Individual scores are summed to form the composite 
score. The composite score determines the overall 
image strength class using thresholds set to optimize the 
classification results for the training data. 

c) Other Scoring Methods Tested 
Two alternate overall classification methods using the 

features described in a) were tested: 
1.  a Support Vector Machine (SVM) and  
2.  a standard Mahalonobis distance method. 
However, since neither approach showed improved 

classification and did not easily support the flexible scoring 
described in Section b) 2 above, we did not pursue them 
further in this work. 

IV. PERFORMANCE RESULTS OF TWO CASE STUDIES 

A. Head and Neck Cancer Images 
In general, negatively stained images were straightforward 

to classify. However, the large number of antibodies tested 
introduced a significant amount of variability in brown 
staining. The moderate and weak stain strengths were more 
difficult to discriminate. The algorithm results for stain 
strength classification matched 80% of the HPA stain 
strength annotations for the 210 test images. Table I presents 
the confusion matrix between our classification and the 
pathologist annotations from HPA. The automatic sub-
cellular localization algorithm matched the HPA annotation 
in 83% of cases.  The average difference in % cell staining 
between the algorithm and the HPA annotation was 6%. 
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TABLE I  

 STAIN STRENGTH CONFUSION MATRIX  FOR HEAD AND NECK CANCER  
HPA Stain Strength Label Algorithm 

Classification Strong Moderate Weak Negative 
Strong 0.83 0.32 0.04 0.01 

Moderate 0.04 0.65 0.20 0.01 
Weak 0.09 0.03 0.70 0.09 

Negative 0.04 0.00 0.06 0.89 

B. Prostate Cancer Images 
The images tested were HPA sets of cancerous prostate 

tissue treated with stain-conjugated antibodies for proteins 
expressed by the following four genes mentioned in the 
literature as potential biomarkers for prostate cancer: 
AMACR [9], CTSL1, IAFP, and CD99. We selected five 
training images (independent of the 91 test images) from 
each strength class to compute the means, midpoints, and 
variances used for the overall classification. The pixel-level 
classification was done using the same classifier as head and 
neck with no additional training. 

The algorithm results for stain strength classification 
matched 86% of the HPA stain strength annotations for the 
91 test images. The average difference in % cell staining 
between the automatic annotation algorithm and the HPA 
human annotation was only 5%. 

 
TABLE II 

STAIN STRENGTH CONFUSION MATRIX FOR PROSTATE CANCER DATA 
HPA Stain Strength Label Algorithm 

Classification Strong Moderate Weak Negative 
Strong 0.83 0.04 0.14 0.00 

Moderate 0.00 0.86 0.14 0.00 
Weak 0.17 0.03 0.72 0.12 

Negative 0.00 0.07 0.00 0.88 

V. DISCUSSION 
This paper demonstrates a robust approach for multilevel 

classification of TMA  images. The ability to accurately 
classify blue and brown pixels is one of the keys to 
automated analysis of DAB and hematoxylin stained tissue 
images. A second important factor for automated analysis is 
successful automated determination of nuclei locations. The 
algorithm presented accomplishes with reasonable accuracy. 
In particular, histiocytes were observed to pass the filtering 
criteria in several images. Future work will include template 
discrimination (SDF filters or Residual Vector Quantization 
[10] methods) for detection of nuclei and rejection of known 
nuclei-like objects. 

Third, the imprecise sampling of the cytoplasm and 
membrane regions used in this study caused some errors in 
the classification results. More accurate sampling of these 
regions should produce better classification results. Level 
sets and Delauney triangulation are under consideration for 
improving this part of the system [11]. 

Although the stain classification for prostate cancer is 
typically based on staining close to the perimeter of the 
glands, the classification proposed in this paper does not 

limit the measure of staining to a particular region. Stained 
pixel samples are taken surrounding any valid nuclei. In 
spite of this obvious limitation, the algorithm performed 
reasonably well on a test case of prostate cancer tissue 
samples. Better region of interest selection and gland 
segmentation should provide improved results. 

VI. CONCLUSION 
Automatic annotation of stain strength and location is 

possible for a broad range of tissue and antibody types with 
the multilevel process described in this paper, which is not 
possible with standard image processing techniques. The 
software developed provides a faster, reproducible, 
computer-based automatic annotation system benchmarked 
to human annotation standards for antibody-based proteome 
studies. Other important applications include: 1) screening 
IHC TMA databases to identify images which statistically 
do not match similarly classified images in the database, and 
2) automatically narrowing down the search for potential 
biomarkers in a large field of candidates. 
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