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Abstract— Modern techniques for medical diagnosis and
therapy in minimal invasive surgery scenarios as well as
industrial inspection make considerable use of flexible, fiber-
optic endoscopes in order to gain visual access to holes, hollows,
antrums and cavities that are difficult to enter and examine.
Unfortunately, fiber-optic endoscopes exhibit artifacts in the
images that hinder or at worst prevent fundamental image
analysis techniques. The dark comb-like artifacts originate from
the opaque cladding layer surrounding each single fiber in the
image conductor. Although the removal of comb structure is
crucial for fiber-optic image analysis, literature covers only a
few approaches. Those are based on Fourier analysis and make
use of spectral masking or they operate in the spatial domain
and rely on interpolation. In this paper, we concentrate on the
latter type and introduce interpolation concepts known from
related disciplines to the task of comb structure removal. For
a quantitative evaluation, we perform experiments with real
images as well as with bivariate test functions and rate an
algorithm’s performance in terms of the normalized root mean
square error - a quality metric that it is most commonly used in
signal processing for this purpose. Hence, this paper counters
the fact that literature lacks an objective performance compar-
ison of the state-of-the-art interpolation based approaches for
this type of application.

I. INTRODUCTION
Minimally invasive surgery (MIS) is the most important

revolution in surgical technique since the early 1900s [1].
This type of surgery is performed through several small
incisions or puncture sites. Typically, rigid or flexible endo-
scope(s) and surgical instruments are passed through these
small entry points. The endoscope(s) enables the surgeon to
view the problem area without having to disrupt soft tissue
to a large extent. Consequently, MIS is increasingly popular
because it reduces operation time, minimizes patient trauma,
speeds up recovery time, and saves money - benefiting sur-
geon and patient [2]. Due to this, endoscopy can legitimately
be considered as one of the key technologies for modern
medical diagnosis and therapy. In some cases the size of the
entry points or the complexity of the scene itself forbids the
use of rigid lens-based endoscopes and tip chip videoscopes
so that the physician has to resort to flexible, fiber-optic
endoscopes. These endoscopes feature a bendable image
conductor with a limited number of coated glass or quartz
fibers. Each of its optical fibers consists of a core surrounded
by a opaque cladding layer. It is this physical layout that
leads to dark comb-like imaging artifacts, the so-called comb
structure (see Fig.1). Unfortunately, this structure is likely
to hinder or even anticipate an appropriate image analysis,
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Fig. 1. Image of a small checkerboard being viewed through a flexible
endoscope along with a magnified region showing the typical comb structure
(top) and a comb-free version obtained by interpolation as described in [3]
(bottom).

hence it needs to be removed in order to apply common
image analysis or image processing techniques.

Literature discusses several methods that claim to be
able to remove these structures while preserving the image
content. These methods either work in the Fourier domain
such as low pass filtering [4] and adaptive spectral masking
[5] or they operate in the spatial domain and interpolate
the cladding areas from pixels containing fiber-optic content.
Elter et. al. [3] propose a method that first extracts the fiber
center positions with subpixel accuracy and subsequently
resamples the image content from the intensities at these
positions by interpolation. Unfortunately, neither [3] nor
any other publications provide a performance assessment or
take other interpolation strategies into consideration. At best,
only [6] provides a comparison of a spatial interpolation-
based method with a fourier domain method. However, the
evaluation focusses on the accuracy of feature extractors for
camera calibration from fiber-optic views. It does not address
the accuracies of interpolation-based comb-structure removal
methods.

In this work, we try to improve these shortcomings and
transfer interpolation schemes from related disciplines such
as geology, geography, meteorology and computer graphics
to the application of comb structure removal. For a quantita-
tive performance assessment, we make use of a normalized
version of the commonly used root-mean-square error.
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II. METHODS
The algorithms presented in this work interpolate the

intensities at cladding pixels from the intensities at nearby
fiber centers. Consequently, they share the requirement that
the (sub)pixel precise center positions of all NFiber fibers
need to be known beforehand. For this, an image of a
homogenous bright white scene (i.e. a sheet of paper) is taken
and analyzed yielding the (sub)pixel precise location of each
fiber. There are many possible ways for a proper extraction
of these locations. However, we refer to the original paper
[3] that elaborately describes a convenient method.

For the remainder we call the fiber center positions pk

stencils and assume that they have been arranged in a set
S = {pk : pk = (xk, yk) ∈ R2, k = 0, . . . , NFiber − 1}.
For a given fiber-optic image I , the task of resampling a
comb structure free image Î can be interpreted as a surface
interpolation problem in which we have data values Ik =
I(pk) defined at the position pk contained in the set S.
Then, we seek to find a surface Î(x, y) which takes on the
value Îk = Ik at the stencils pk for pk ∈ S and provide
good approximations Îk at non-stencil positions pk /∈ S.
The approximations Îk are then the replacements for the
intensities at the cladding areas.

The different interpolation methods can be classified with
respect to their dependency on local differential proper-
ties of the underlying function Î(x, y), such as first order
directional derivatives ∂k = ∇Î(pk) at stencils pk. An
alternative approach classifies into global methods, in which
each interpolated value is influenced by the values at all
stencils, and local methods, in which the new value is
calculated from nearby stencils only. However, due to the
great amount of NFiber ∈ [3000, . . . , 50000] fibers (stencils)
in a flexibile endoscope, global methods such as inverse
distance weighting [7] or radial basis functions methods [8]
will hardly be feasible due to their computational complexity.
Consequently, we are forced to apply local methods only and
thus resort to the first classification scheme. Due to the fact,
that some of the methods rely on a planar partitioning of the
stencil set S, a triangulation of S will be denoted by ∆S.

A. Local differential independent methods

Data independent methods do not require local differential
properties of the underlying function Î(x, y) in order to
derive the value for a query point q = (xq, yq) /∈ S. Instead,
the intensity Î(q) is a convex combination of the intensities
at the stencils p in the neighborhood N (q) of q:

Î(q) =
∑

p∈N (q)

ω(p)I(p) . (1)

1) Natural neighbor interpolation (NNI): In natural
neighbor interpolation, the neighborhood N (q) is defined
by the set of natural neighbors and the weights ω(p) are
given by the natural neighbor coordinates. Natural neighbors
and their associated coordinates have been introduced by
Sibson [9] to interpolate multivariate scattered data. Given a
subset of stencils S⊂ ⊆ S, the natural neighbor coordinates
associated to S⊂ are defined from the Voronoi diagram ∆̄S⊂

Fig. 2. Resampling of comb-structure free images interpreted as surface
interpolation problem. Since only the fiber centers pk (represented by the
spheres) obtain valid intensity information Î(pk), missing intensities (i.e.
at cladding positions (xq , yq)) have to be interpolated from the set of fiber
centers S. Hence, a comb-structure free image is interpreted as a surface
Î(x, y) that has been reconstructed from the intensities at pk ∈ S.

of S⊂. When simulating the insertion of a query point q
into ∆̄S⊂ , the potential Voronoi cell of q chops off some
parts from the existing cells. Let A(q) denote the area of
the potential Voronoi cell of q and Ap(q) denote the area of
the sub-cell that would be stolen from the cell of the stencil p
by the cell of query point q. The natural neighbor coordinate
of q with respect to the stencil p ∈ S⊂ is defined by the
ratio of the stolen area A(p) and the area of the new cell
A(q). Hence, the interpolation is carried out by

Î(q) =
∑

p∈N (q)

A(p)
A(q)

I(p) . (2)

This kind of interpolation results in a C1 continuous surface
Î(x, y) except at the stencils pk.

2) Linear or barycentric interpolation (LI): In contrast
to the natural neighbor interpolation that requires a Delau-
nay triangulation, the piecewise linear interpolation scheme
operates on an arbitrary triangulation ∆S of S. The surface
recovered by this method is C0 continuous with discontinu-
ities at the triangle boundaries. For an arbitrary query point
q = (xq, yq) let the enclosing triangle be defined by the
three stencils pi = (xi, yi), i = 1, . . . , 3 with the intensities
I(pi). Then, the intensity of q is given by:

Î(q) = ω(p1)I(p1) + ω(p2)I(p2) + ω(p3)I(p3) (3)

with ω(p1)
ω(p2)
ω(p3)

 =

 x1 x2 x3

y1 y2 y3
1 1 1

−1 xq

yq
1

 . (4)

The weights ω(pk) are known as the barycentric coordinates
of the triangle and they are independent of the intensity
values at the stencils pk.
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TABLE I
NORMALIZED RMS ERRORS BETWEEN THE TEST FUNCTIONS AND

THEIR RECONSTRUCTION FROM THE SUBPIXEL PRECISE STENCIL SET

f1 f2 f3 f4 f5 f6

LI 3.81e-6 1.55-5 5.05e-4 2.20e-4 1.66e-4 2.93e-3
NNI 6.50e-6 8.87e-6 4.51e-4 3.35e-4 2.01e-4 2.88e-3
QI 2.80e-6 5.18e-5 4.30e-4 4.00e-4 4.35e-5 1.03e-3

NNI1 2.79e-6 6.73e-6 8.47e-5 2.87e-6 5.53e-6 3.04e-3
BBI 2.91e-6 8.08e-6 1.30e-4 3.47e-5 3.71e-6 3.02e-3

B. Local differential dependent methods

In contrast to the former class of interpolation methods,
methods subsumed in this category require the knowledge
of differential quantities. However, due to the fact that these
quantities are unknown, they have first to be estimated from
the intensities at the stencils. Consequently, they have to be
re-estimated, every time the data at the stencils changes.
Suitable methods for the estimation of local differential
quantities can be found in [10], [11], [12].

1) C1 natural neighbor interpolation (NNI1): In [9],
Sibson describes an interpolation scheme, that results in a C1

surface Î(x, y). The method requires the function gradients
∇Î(pk) to be known or estimated for all stencils pk. Then,
for a query point q, the intensity Î(q) is given by:

Î(q) =
α(q)

∑
ω(p)I(p) + β(q)ξ(q)
α(q) + β(q)

with (5)

α(q) =
β(q)∑ ω(p)
||q−p||

, β(q) =
∑

ω(p)||q− p||2 (6)

and

ξ(q) =

∑ ω(p)
||q−p||I(p) +∇Î(p)T (q− p)∑ ω(p)

||q−p||

. (7)

As in Sec.II-A.1, ω(p) denotes the natural neighbor coordi-
nate of the stencil p and the sum in the above equations is
with respect to all stencils p in the neighborhood N (q) of
the query point q.

2) Quadratic interpolation (QI): With knowledge of the
function gradients ∇Î(pk)

Î(q) =
∑

p∈N (q)

ω(p)
(
I(p) +

1
2
∇Î(p)T (q− p)

)
(8)

yields an interpolant that is not C1 continuous in general.
However, it reproduces quadratic functions exactly.

3) Bernstein-Bezier interpolation (BBI): Farin [13] ex-
tended Sibson’s work and realizes a C1 continuous inter-
polant by embedding natural neighbor coordinates in the
Bernstein-Bezier representation of a cubic simplex. Thus,
the interpolation value of a query point q is given by the
evaluation of the cubic polynomial defined on the triangle
pi, i = 1, ..., 3 containing the query point q. In order
to create a piecewise C1-continuous interpolation surface
Î(x, y), the method requires the stencils’ intensities I(pi) of
the triangle and the gradients ∇Î(pi) as well as the normal
derivative at the midpoint of each of the three triangle edges

TABLE II
DIFFERENCES OF NRMS ERRORS BETWEEN THE INTERPOLATION FROM

SUBPIXEL PRECISE AND PIXEL PRECISE STENCILS.

f1 f2 f3 f4 f5 f6

LI -5.66e-6 7.17e-6 1.75-04 -4.21e-4 -3.20e-5 1.44e-3
NNI 4.02e-6 -5.86e-6 1.13e-4 -2.62e-4 -2.69e-4 1.57e-3
QI 2.64e-6 -1.28e-5 -1.17e-4 -2.26e-5 -1.05e-5 4.28e-4

NNI1 1.52e-6 2.37e-6 -1.06e-4 -1.54e-4 4.81e-6 1.53e-3
BBI 2.53e-6 2.12e-6 -6.70e-5 -9.60e-5 3.39e-6 1.51e-3

in order to ensure that the normal slope matches across
triangle boundaries. Then, the aim is to impose these 12
constraints on the cubic polynomial defined on the triangle.
Since a bivariate cubic polynomial is determined by only ten
coefficients

f(x, y) =
∑
i,j

aijx
iyj , i, j ∈ [0, 3] (9)

it can only satisfy ten constraints. However, a subdivision of
the triangle into subtriangles yields more degrees of freedom
and thus allows for satisfying the constraints and solving for
the polynomial coefficients. Details on this rather complex
algorithm can be found in the original publication [13].

III. EXPERIMENTS AND RESULTS

In this section, we present the evaluation of the different
interpolation schemes outlined above. For this, we extract the
fiber centers for a flexible glass fiber endoscope with 20000
fibers. The subpixel precise positions are extracted from a
720-by-720 pixel sized white image according to [3]. This
stencil set is denoted as S. Analogously, the set Sp refers to
the same fiber center locations, but in pixel precision only.

A. Test data and quality measure

For the stencil sets, we performed experiments with real
images as well as with bivariate test functions. However,
we present only the results for the test functions due to
space limitations. Certainly, this restriction will not bias the
conclusions. The test functions fi(x, y), i = 1, ..., 5 are taken
from [14], because they are commonly used for an evaluation
of scattered data interpolation methods. In addition, we
extend the set by a checkerboard with two black and two
white patches since such patterns are frequently used for
sensor calibration:

f6(x, y) =

{
1.0 ( 1

2 ≤ x, y ≤ 1) ∨ (1 ≤ x, y ≤ 3
2 )

0.0 else
(10)

For a quantitative evaluation, we make use of the normal-
ized root mean square error (nRMS). For each test function
fi(x, y), we first sample data points at the stencils pk of a
given set S or Sp and apply an interpolation method in order
to obtain a reconstruction Î(x, y) of fi(x, y). The domain
[0,W − 1]× [0, H − 1] of fi(x, y) and Î(x, y) is defined by
the dimension of the white image. By nature, the stencils are
irregularily distributed in the domain. In this particular case
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they make up 6.5% of the points in the domain:

RMS =

√√√√∑W−1
x=0

∑H−1
y=0

(
f(x, y)− Î(x, y)

)2

WH
. (11)

In order to ease up the comparison of the results for different
functions fi(x, y), we normalize the RMS by dividing the
range of observed values over the domain according to [15],
yielding the normalized root mean square:

nRMS = RMS/(max fi(x, y)−min fi(x, y)) . (12)

In order to get an impression of the resulting numbers, let us
consider commonly used gray scale images with 8-bit. Then
a normalized value of 1/256 ≈ 3.9e-3 equals the difference
of one intensity step in the gray scale.

B. Results

Tab.I exhibits the normalized RMS of the algorithms for
the stencil set S. The smaller the value is, the better the
interpolation method reconstructs the original data. It is
shown that the algorithms perform comparably across the
set of test functions f1, . . . , f5 with one exception. This
is due to the sharp edges in the checkerboard modelled
by f6. It is clear that all algorithms suffer from accuaracy
imprecisions in this case, because they all share the problem
to approximate discontinuities in the underlying function
with (piecewise) continuous functions. Consequently, the last
column exhibits comparably high errors.

Apart from that, the results shown in Tab.I are indifferent,
because the nRMS values are mostly of comparable order for
both categories of algorithms. However, algorithms exploit-
ing local differential properties result in slightly lower errors,
with the C1 continuous natural neighbor interpolation (NNI1)
yielding the best results. Indeed, this comes at the price of
higher computational complexity, because the weights ω(qk)
have to be re-estimated for every change of the values at the
stencil qk. In contrast, for the linear method (LI) as well
as for the natural neighbor interpolation (NNI) method the
weights need to be calculated just once, due to the fact that
they are independent of the values at the stencils. Hence, it is
appropriate to pre-calculate a look-up table that maps a pixel
position (x, y) to the stencil positions pk and the associated
weights ω(pk). By this, interpolation can be significantly
accelerated enabling real-time processing of image streams.
As a matter of fact, local differential dependent methods can
be accelerated when taking advantage of modern graphics
cards. Thus, fast processing is feasible in this class, too.
However, this is not as straight forward as calculating a
lookup table and far beyond the scope of this paper.

Finally, Tab. II shows the differences of the normalized
RMS errors when interpolating from the set S and its pixel-
precise counterparts Sp. For a given function and interpola-
tion method, a positive value indicates that the interpolation
from S yielded a lower normalized RMS than the interpola-
tion from Sp. The table’s values show arbitrarily flipping
signs indicating that - in the context of comb structure
removal - subpixel precise stencils do not guarantee better

interpolation accuracies and thus do not provide a benefit at
all.

IV. CONCLUSIONS

In this paper we presented an evaluation of interpolation
strategies for use in spatial comb structure removal algo-
rithms. The results have shown that algorithms exploiting
local differential properties are only slightly superior in terms
of reconstruction accuarcy, but feature high computational
complexity. Hence, such algorithms can be a good choice, if
the smoothness and continuity of the reconstructed image is
of particular interest, while execution time is less important.
In any other case, linear interpolation or natural neighbor
interpolation seems to be an advisable choice, because they
yield comparable results with less complexity. Additionally,
it is fairly easy to accelerate such method with a lookup table.
Finally, it has been shown that at least in this study the use
of subpixel precise fiber center locations does not result in
improved reconstruction accuracies as possibly expected.
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